Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Physiol ; 79: 209-236, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28192062

RESUMO

The hypothalamus is an evolutionarily conserved brain structure that regulates an organism's basic functions, such as homeostasis and reproduction. Several hypothalamic nuclei and neuronal circuits have been the focus of many studies seeking to understand their role in regulating these basic functions. Within the hypothalamic neuronal populations, the arcuate melanocortin system plays a major role in controlling homeostatic functions. The arcuate pro-opiomelanocortin (POMC) neurons in particular have been shown to be critical regulators of metabolism and reproduction because of their projections to several brain areas both in and outside of the hypothalamus, such as autonomic regions of the brain stem and spinal cord. Here, we review and discuss the current understanding of POMC neurons from their development and intracellular regulators to their physiological functions and pathological dysregulation.


Assuntos
Hipotálamo/metabolismo , Hipotálamo/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Pró-Opiomelanocortina/metabolismo , Animais , Homeostase/fisiologia , Humanos
2.
Best Pract Res Clin Endocrinol Metab ; 28(5): 757-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25256770

RESUMO

Uncoupling protein 2 (UCP2) is a mitochondrial anion carrier protein, which uncouples the oxidative phosphorylation from ATP production by dissipating the proton gradient generated across the mitochondrial inner membrane. UCP2 regulates not only mitochondrial ATP production, but also the generation of reactive oxygen species (ROS), considered important second-messenger signals within the cell. The importance of UCP2 was firstly reported in macrophages and pancreatic beta cells. However, several studies have revealed the important role of UCP2 in the Central Nervous System (CNS) in the regulation of homeostatic mechanisms including food intake, energy expenditure, glucose homeostasis and reward behaviors. The mechanisms by which central UCP2 affect these processes seem to be associated with synaptic and mitochondrial plasticity. In this review, we will describe recent findings on central UCP2 and discuss its role in CNS regulation of homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2
3.
Proc Natl Acad Sci U S A ; 111(32): 11876-81, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071172

RESUMO

Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.


Assuntos
Glucagon/metabolismo , Hipotálamo/enzimologia , Insulina/metabolismo , Serina Endopeptidases/metabolismo , Animais , Glicemia/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Técnica Clamp de Glucose , Intolerância à Glucose/enzimologia , Intolerância à Glucose/etiologia , Hipotálamo/fisiologia , Indóis/farmacologia , Secreção de Insulina , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Pâncreas/metabolismo , Fosforilação , Prolil Oligopeptidases , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Inibidores de Serina Proteinase/farmacologia , Tiazolidinas/farmacologia , Proteína Desacopladora 1 , Núcleo Hipotalâmico Ventromedial/enzimologia , Núcleo Hipotalâmico Ventromedial/fisiologia
4.
J Neurosci ; 31(23): 8373-80, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21653842

RESUMO

Nutritional deprivation or malnutrition suppresses immune function in humans and animals, thereby conferring higher susceptibility to infectious diseases. Indeed, nutritional deprivation induces atrophy of lymphoid tissues such as thymus and spleen and decreases the number of circulating lymphocytes. Leptin, a major adipocytokine, is exclusively produced in the adipose tissue in response to the nutritional status and acts on the hypothalamus, thereby regulating energy homeostasis. Although leptin plays a critical role in the starvation-induced T-cell-mediated immunosuppression, little is known about its role in B-cell homeostasis under starvation conditions. Here we show the alteration of B-cell development in the bone marrow of fasted mice, characterized by decrease in pro-B, pre-B, and immature B cells and increase in mature B cells. Interestingly, intracerebroventricular leptin injection was sufficient to prevent the alteration of B-cell development of fasted mice. The alteration of B lineage cells in the bone marrow of fasted mice was markedly prevented by oral administration of glucocorticoid receptor antagonist RU486 (11ß-[p-(dimethylamino)phenyl]-17ß-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one). It was also effectively prevented by intracerebroventricular injection of neuropeptide Y Y(1) receptor antagonist BIBP3226 [(2R)-5-(diaminomethylideneamino)-2-[(2,2-diphenylacetyl)amino]-N-[(4-hydroxyphenyl)methyl]pentanamide], along with suppression of the otherwise increased serum corticosterone concentrations. This study provides the first in vivo evidence for the role of central leptin signaling in the starvation-induced alteration of B-cell development. The data of this study suggest that the CNS, which is inherent to integrate information from throughout the organism, is able to control immune function.


Assuntos
Linfócitos B/metabolismo , Diferenciação Celular/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Transdução de Sinais/fisiologia , Inanição/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Adrenalectomia , Animais , Linfócitos B/imunologia , Glicemia , Diferenciação Celular/efeitos dos fármacos , Citometria de Fluxo , Hipotálamo/efeitos dos fármacos , Hipotálamo/imunologia , Leptina/farmacologia , Masculino , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Inanição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA