Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Phytother Res ; 37(11): 5017-5040, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491018

RESUMO

The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.


Assuntos
Doença de Alzheimer , Saponinas , Triterpenos , Humanos , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neuroproteção , Saponinas/farmacologia , Saponinas/uso terapêutico , Triterpenos/farmacologia , Triterpenos/uso terapêutico
2.
Mol Pharmacol ; 103(5): 266-273, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868792

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease that is accompanied by memory decline and cognitive dysfunction. Aggregated amyloid ß formation and accumulation may be one of the underlying mechanisms of the pathophysiology of AD. Therefore, compounds that can inhibit amyloid ß aggregation may be useful for treatment. Based on this hypothesis, we screened plant compounds used in Kampo medicine for chemical chaperone activity and identified that alkannin had this property. Further analysis indicated that alkannin could inhibit amyloid ß aggregation. Importantly, we also found that alkannin inhibited amyloid ß aggregation after aggregates had already formed. Through the analysis of circular dichroism spectra, alkannin was found to inhibit ß-sheet structure formation, which is an aggregation-prone toxic structure. Furthermore, alkannin attenuated amyloid ß-induced neuronal cell death in PC12 cells, ameliorated amyloid ß aggregation in the AD model of Caenorhabditis elegans (C. elegans), and inhibited chemotaxis observed in AD C. elegans, suggesting that alkannin could potentially inhibit neurodegeneration in vivo. Overall, these results suggest that alkannin may have novel pharmacological properties for inhibiting amyloid ß aggregation and neuronal cell death in AD. SIGNIFICANCE STATEMENT: Aggregated amyloid ß formation and accumulation is one of the underlying mechanisms of the pathophysiology of Alzheimer's disease. We found that alkannin had chemical chaperone activity, which can inhibit ß-sheet structure formation of amyloid ß and its aggregation, neuronal cell death, and Alzheimer's disease phenotype in C. elegans. Overall, alkannin may have novel pharmacological properties for inhibiting amyloid ß aggregation and neuronal cell death in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Caenorhabditis elegans/metabolismo , Amiloide/uso terapêutico
3.
Food Funct ; 13(6): 3603-3620, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262106

RESUMO

Dried Eleutherococcus senticosus leaves (ESL), also known as Siberian ginseng tea, are beneficial for human neural disorders. Our previous studies showed that the aqueous extract of ESL enhanced memory in mice, and its saponin fraction (ESL-SAP) exhibited promising neuroprotective activities in vitro; however, the in vivo neurally related effect, bioactive material basis, and possible mechanism of action of ESL-SAP have not been investigated. Here, a series of memory and learning tests were carried out, and the results evidenced a significant enhancement effect of ESL-SAP. Furthermore, an in vivo saponin library-guided pseudotargeted strategy was established to support the rapid monitoring of 26 blood-brain barrier (BBB)-permeated saponins from ESL-SAP-administered rats. A further network pharmacology analysis was conducted on BBB-permeated compounds, which indicated that the in vivo mechanism of ESL-SAP might be effective through multiple targets and pathways, such as the AGE-RAGE signaling pathway and PI3K-Akt signaling pathway, to exert neuroprotective effects. Moreover, the molecular docking experiments demonstrated that key BBB-transferred saponins primarily interacted with targets HRAS, MAPK1, and MAPK8 to produce the neuroprotective effect.


Assuntos
Eleutherococcus , Saponinas , Animais , Barreira Hematoencefálica , Camundongos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ratos , Saponinas/análise , Saponinas/farmacologia
4.
Phytomedicine ; 82: 153452, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418139

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a refractory neurodegenerative disease caused by inflammation. M1 microglia induce inflammation, whereas M2 suppress inflammation and exhibit neuroprotective effects. Following SCI, M1 cells are more predominant than M2 cells, and hence, increasing the predominance of M2 microglia may improve SCI. PURPOSE: We aimed to evaluate the active constituents of herbal medicine that induce M2 predominance and to investigate their effects using SCI model mice. METHODS: Herbal medicine inducing M2 were screened using cultured microglia. After orally administering the active herbal medicine, Polygalae Radix (PR), to SCI model mice, motor function was evaluated. Compounds in the spinal cord following treatment were assessed using liquid chromatography-mass spectrometry. The effects of compounds detected in the spinal cord were investigated in cultured microglia. RESULTS: PR induced M2 predominance in cultured microglia, improved motor function in SCI model mice, and showed a tendency to increase M2 microglia and protect against axonal degeneration in the inured spinal cord. Sibiricose A5 and 3,6'-disinapoyl sucrose were identified as active constituents in PR. CONCLUSION: PR may be a promising candidate for the treatment of SCI by inducing M2 predominance.


Assuntos
Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Plantas Medicinais/química , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Masculino , Camundongos
5.
Nutrients ; 13(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477648

RESUMO

In an aging society, preventing dysfunction and restoring function of the locomotive organs are necessary for long-term quality of life. Few interventional studies have investigated supplementation for locomotive syndrome. Additionally, very few interventional clinical studies on locomotive syndrome have been performed as placebo-controlled, randomized, double-blind studies. We previously found that the administration of 30% ethanolic extract of Cistanche tubulosa improved walking ability in a cast-immobilized skeletal muscle atrophy mouse model. Therefore, we conducted a clinical study to evaluate the effects of C. tubulosa (CT) extract on the locomotive syndrome. Twenty-six subjects with pre-symptomatic or mild locomotive syndrome completed all tests and were analyzed in the study. Analyses of muscle mass and physical activity were performed based on the full analysis set. Intake of CT extract for 12 weeks increased step width (two-step test) and gait speed (5 m walking test) in patients over 60 years old compared with those in a placebo control (p = 0.046). In contrast, the skeletal muscle mass of the body trunk and limbs was unchanged following administration of CT extract. Adverse effects were evaluated by blood tests; no obvious adverse events were observed following the intake of CT extract. In conclusion, this placebo-controlled, randomized, double-blind study demonstrated that treatment with CT extract significantly prevented a decline in walking ability without any notable adverse effects in patients with locomotive syndrome.


Assuntos
Cistanche/química , Transtornos Neurológicos da Marcha/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Idoso , Cistanche/efeitos adversos , Método Duplo-Cego , Exercício Físico , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Fitoterapia , Placebos , Extratos Vegetais/efeitos adversos , Qualidade de Vida , Caminhada/fisiologia
6.
J Nat Med ; 75(1): 207-216, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32979168

RESUMO

Several studies have suggested that some kind of Dioscorea species (yam) or yam-contained herbal medicines have cognitive enhancement effect. However, it has been unknown what is a crucial factor for cognitive enhancement in each Dioscorea species. In this study, we aimed to investigate whether one of the main and brain-penetrating components in yams, diosgenin, can be a novel criterion to assess memory enhancement effect of yam extracts. Although our previous studies showed that administration of diosgenin or diosgenin-rich yam extract enhanced cognitive function in normal mice and healthy humans, we have never evaluated whether the effect depends on diosgenin content or not. Therefore, we compared memory enhancement effects of low diosgenin-contained general yam water extract with diosgenin-rich yam extract on cognitive function in normal mice. We found that unlike diosgenin-rich yam, administration of general yam water extract did not enhance object recognition memory in normal mice. LC-MS/MS analyses revealed that after administration of general yam, diosgenin concentration in the brain did not reach to the effective dose because of the low diosgenin content in the original yam extract. On the other hand, when diosgenin was artificially added into general yam, the extract showed memory enhancement in normal mice and promoted neurite outgrowth in neurons. Our study suggests that diosgenin is actually an active compound in yams for memory enhancement, and diosgenin content can be a criterion for predicting cognitive enhancement effect of yam extracts.


Assuntos
Cognição/efeitos dos fármacos , Dioscorea/química , Diosgenina/uso terapêutico , Memória/efeitos dos fármacos , Extratos Vegetais/química , Animais , Diosgenina/farmacologia , Humanos , Camundongos , Estrutura Molecular
7.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630004

RESUMO

In Alzheimer's disease (AD), amyloid ß (Aß) induces axonal degeneration, neuronal network disruption, and memory impairment. Although many candidate drugs to reduce Aß have been clinically investigated, they failed to recover the memory function in AD patients. Reportedly, Aß deposition occurred before the onset of AD. Once neuronal networks were disrupted by Aß, they could hardly be recovered. Therefore, we speculated that only removal of Aß was not enough for AD therapy, and prevention and recovery from neuronal network disruption were also needed. This review describes the challenges related to the condition of axons for AD therapy. We established novel in vitro models of Aß-induced axonal degeneration. Using these models, we found that several traditional medicines and their constituents prevented or helped recover from Aß-induced axonal degeneration. These drugs also prevented or helped recover from memory impairment in in vivo models of AD. One of these drugs ameliorated memory decline in AD patients in a clinical study. These results indicate that prevention and recovery from axonal degeneration are possible strategies for AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Axônios/efeitos dos fármacos , Magnoliopsida , Fitoterapia , Extratos Vegetais/uso terapêutico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Extratos Vegetais/farmacologia
8.
Nutrients ; 12(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979283

RESUMO

We previously found that the water extract of Eleutherococcus senticosus leaves (ES extract) enhanced cognitive function in normal mice. Our study also revealed that the water extract of rhizomes of Drynaria fortunei (DR extract) enhanced memory function in Alzheimer's disease model mice. In addition, our previous experiments suggested that a combined treatment of ES and DR extracts synergistically improved memory and anti-stress response in mice. Although those two botanical extracts are expected to be beneficial for neuropsychological function, no clinical data has ever been reported. Therefore, we performed a placebo-controlled, randomized, double-blind study to evaluate cognitive enhancement and anti-stress effects by the intake of a combined extract in healthy volunteers. The intake period was 12 weeks. The Japanese version of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) test was used for neurocognitive assessment. The combined treatment of ES and DR extracts significantly increased the figure recall subscore of RBANS (p = 0.045) in an intergroup comparison. Potentiation of language domain ((p = 0.040), semantic fluency (p = 0.021) and figure recall (p = 0.052) was shown by the extracts (in intragroup comparison). In anti-stress response, the anxiety/uncertainly score was improved by the extract in an intragroup comparison (p = 0.022). No adverse effects were observed. The combined treatment of ES and DR extracts appear to safely enhance a part of cognitive function in healthy adults.


Assuntos
Cognição/efeitos dos fármacos , Eleutherococcus , Nootrópicos/administração & dosagem , Extratos Vegetais/administração & dosagem , Polypodiaceae , Idoso , Método Duplo-Cego , Eleutherococcus/química , Feminino , Voluntários Saudáveis , Humanos , Japão , Masculino , Rememoração Mental/efeitos dos fármacos , Pessoa de Meia-Idade , Nootrópicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Polypodiaceae/química , Rizoma , Solventes/química , Água/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-31885674

RESUMO

Skeletal muscle atrophy is encountered in many clinical conditions, but a pharmacological treatment has not yet been established. Cistanche tubulosa (Schenk) Wight is an herbal medicine used in traditional Japanese and Chinese medicine. In the current study, we investigated the effect of C. tubulosa extract (CTE) on atrophied muscle in vivo. We also investigated hindlimb cast immobilization in mice and devised a novel type of hindlimb-immobilizing cast, consisting of sponge-like tape and a thin plastic tube. Using this method, 3 out of 4 groups of mice (n = 11 for each group) were cast-immobilized in the hindlimbs and administered CTE or vehicle for 13 days. A sham procedure was performed in the mice of the fourth group to which the vehicle was administered. Next, the triceps surae muscles (TS) were excised. To analyze the effect of the novel cast system and CTE administration on muscle atrophy, we evaluated TS wet weight and myofiber cross-sectional area (CSA). We also determined MyHC IId/IIx expression levels by western blotting, since their increase is a hallmark of disuse muscle atrophy, suggesting slow-to-fast myofiber type shift. Moreover, we performed two tests of hindlimb performance. The novel cast immobilization method significantly reduced TS wet weight and myofiber CSA. This was accompanied by deterioration of hindlimb function and an increase in MyHC IId/IIx expression. CTE administration did not alter TS wet weight or myofiber CSA; however, it showed a trend of amelioration of the loss of hindlimb function and of suppression of the increased MyHC IId/IIx expression in cast-immobilized mice. Our novel hindlimb cast immobilization method effectively induced muscle atrophy. CTE did not affect muscle mass, but suppressed the shift from slow to fast myofiber type in cast-immobilized mice, ameliorating hindlimb function deterioration.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31217803

RESUMO

BACKGROUND AND AIMS: We previously reported that the administration of traditional Japanese medicines, kihito (Gui-Pi-Tang in Chinese) and kamikihito (Jia-Wei-Gui-Pi-Tang in Chinese), to Alzheimer's disease (AD) model mice improved memory impairment. There are a few reports that show kihito and kamikihito have a beneficial effect on the cognitive function of AD patients in clinical studies. However, these studies are not comparative and are retrospective studies; thus, more evidence is needed. Therefore, we conducted an open-label, crossover designed clinical trial to investigate the effect of kihito on cognitive function of AD patients. METHODS: The inclusion criteria for eligible patients were as follows: (1) imaging diagnosis (magnetic resonance imaging and single-photon emission computed tomography) of AD, (2) a treatment regimen including acetylcholinesterase inhibitors (ChEIs), and (3) a Mini-Mental State Examination (MMSE) score ≥15. The exclusion criteria were as follows: (1) change in ChEI dosage, (2) memantine usage, and (3) MMSE score < 15. To prevent bias in age and baseline cognitive function, patients were divided into two groups: the first group received 2.5 g of kihito extract 3 times/day during the first half of the study (weeks 0-16) and the second group received the same dose of kihito during the second half of the study (weeks 17-32). ChEI dosage did not change during the study period. Patients underwent a cognitive function test during weeks 0, 16, and 32. Cognitive function was evaluated by Japanese versions of the Mini-Mental State Examination (MMSE-J) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS-J) test. RESULTS: Ten patients completed the clinical trial (4 males, 6 females, average age 71.7 years). MMSE-J scores significantly increased during the kihito intake period. RBANS-J test scores had a slight improvement during the kihito intake period compared with the ChEI alone treatment period, but no significant changes were observed. CONCLUSION: Kihito improves cognitive function in AD patients.

11.
Nutrients ; 11(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121888

RESUMO

The pharmacological properties of Eleutherococcus senticosus leaf have not been clarified although it is taken as a food item. In this study, the effects of water extract of Eleutherococcus senticosus leaves on memory function were investigated in normal mice. Oral administration of the extract for 17 days significantly enhanced object recognition memory. Compounds absorbed in blood and the brain after oral administration of the leaf extract were detected by LC-MS/MS analyses. Primarily detected compounds in plasma and the cerebral cortex were ciwujianoside C3, eleutheroside M, ciwujianoside B, and ciwujianoside A1. Pure compounds except for ciwujianoside A1 were administered orally for 17 days to normal mice. Ciwujianoside C3, eleutheroside M, and ciwujianoside B significantly enhanced object recognition memory. These results demonstrated that oral administration of the leaf extract of E. senticosus enhances memory function, and that active ingredients in the extract, such as ciwujianoside C3, eleutheroside M, and ciwujianoside B, were able to penetrate and work in the brain. Those three compounds as well as the leaf extract had dendrite extension activity against primary cultured cortical neurons. The effect might relate to memory enhancement.


Assuntos
Encéfalo/efeitos dos fármacos , Eleutherococcus/química , Memória/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Córtex Cerebral/química , Córtex Cerebral/embriologia , Córtex Cerebral/ultraestrutura , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Glicosídeos/análise , Glicosídeos/farmacocinética , Glicosídeos/farmacologia , Masculino , Camundongos , Extratos Vegetais/análise , Extratos Vegetais/farmacocinética , Saponinas/análise , Saponinas/farmacocinética , Saponinas/farmacologia
12.
Phytother Res ; 33(4): 1114-1121, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30768735

RESUMO

Two kinds of microglia are known, classical M1 and alternative M2 phenotypes. Amyloid ß (Aß), a critical cause of Alzheimer's disease (AD), promotes M1 microglial polarization, leading to neuroinflammation and neuronal death. M2 microglia play important roles in anti-inflammatory effects, Aß clearance, and memory recovery in AD. Therefore, increasing of M2 microglia is expected to recover from AD. We previously found that naringenin, a blood-brain barrier penetrating compound, decreased Aß deposits and recovers memory function in transgenic AD model mice. Naringenin reportedly showed anti-inflammatory properties. Here, we aim to investigate potential effects of naringenin on microglial polarization and to reveal the underlying mechanisms of Aß reduction. Primary cultured cortical microglia were treated with Aß1-42 , following administration of naringenin. Naringenin remarkably promoted M2 microglia polarization and inhibited Aß1-42 -induced M1 microglia activation. Because microglia reportedly played a critical role in cerebral Aß clearance through Aß degradation enzymes after phagocytosis, we investigated the expression of Aß degradation enzymes, such as neprilysin and insulin degradation enzyme. After naringenin treatment, these Aß degradation enzymes were downregulated in M1 microglia and upregulated in M2 microglia. Taken together, our results showed that naringenin increased Aß degradation enzymes in M2 microglia, probably leading to Aß plaque reduction.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/efeitos dos fármacos , Antagonistas de Estrogênios/uso terapêutico , Flavanonas/química , Microglia/efeitos dos fármacos , Animais , Antagonistas de Estrogênios/farmacologia , Masculino , Camundongos , Camundongos Transgênicos
13.
Front Pharmacol ; 8: 805, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184495

RESUMO

Memory impairments in Alzheimer's disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid ß (Aß) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aß plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aß. Additionally, it prevented Aß-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aß-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons.

14.
Nutrients ; 9(10)2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29064406

RESUMO

Diosgenin, a yam-derived compound, was found to facilitate the repair of axonal atrophy and synaptic degeneration and improve memory dysfunction in a transgenic mouse model of Alzheimer's disease (AD). It was also found to enhance neuronal excitation and memory function even in normal mice. We hypothesized that diosgenin, either isolated or in an extract, may represent a new category of cognitive enhancers with essential activities that morphologically and functionally reinforce neuronal networks. This study aimed to investigate the effects of a diosgenin-rich yam extract on cognitive enhancement in healthy volunteers. For this placebo-controlled, randomized, double-blind, crossover study, 28 healthy volunteers (age: 20-81 years) were recruited from Toyama Prefecture, Japan, and was randomly assigned to receive either a yam extract or placebo. Preliminary functional animal experiments indicated that an oil solvent mediated the most efficient distribution of diosgenin into the blood and brain after oral administration, and was a critical factor in the cognitive benefits. Therefore, test samples (placebo and yam extract) were prepared with olive oil and formulated as soft capsules. The intake period was 12 weeks, and a 6-week washout period separated the two crossover intake periods. The Japanese version of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) test was used for neurocognitive assessment, and the adverse effects were monitored through blood testing. Diosgenin-rich yam extract consumption for 12 weeks yielded significant increases in total RBANS score. Among the 12 individual standard cognitive subtests, diosgenin-rich yam extract use significantly improved the semantic fluency. No adverse effects were reported. The diosgenin-rich yam extract treatment appeared to safely enhance cognitive function in healthy adults.


Assuntos
Cognição/efeitos dos fármacos , Dioscorea/química , Diosgenina/farmacologia , Extratos Vegetais/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Glicemia/metabolismo , Colesterol/sangue , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue , Adulto Jovem
15.
Biol Pharm Bull ; 39(10): 1569-1575, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27725432

RESUMO

Alzheimer's disease (AD) is a recognized incurable neurodegenerative disorder. Clinically prescribed medicines for AD are expected to bring about only slight symptomatic improvement or a delay of its progression. Another strategy, amyloid ß (Aß) lowing agents, has not been successful at memory improvement. We have hypothesized that an improvement in cognitive function requires the construction of neuronal networks, including neurite regeneration and synapse formation; therefore, we have been exploring candidates for radical anti-AD drugs that can restore Aß-induced neurite atrophy and memory impairment. Our studies found several promising drug candidates that may improve memory dysfunction in AD model mice. The main activity of these drugs is the restoration of damaged axons. Focusing on candidates based on the recovery of neurite atrophy in vitro certainly leads to positive effects on memory improvement also in vivo. This suggests that neuronal network reconstruction may importantly relate to functional recovery in the brain. When identifying the signaling mechanisms of exogenous compounds like natural medicine-derived constituents, molecules directly activated by the compound are hard to be identified. However, the drug affinity responsive target stability (DARTS) analysis may pave the way to an approach to determine the initial molecule of the signaling pathway. Exploring new drug candidates and clarifying their signaling pathways directly relating to neuronal network reconstruction may provide promising therapeutic strategies with which to overcome AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Neurônios/fisiologia , Peptídeos beta-Amiloides/fisiologia , Animais , Atrofia , Diosgenina/farmacologia , Diosgenina/uso terapêutico , Humanos , Medicina Tradicional , Neurônios/efeitos dos fármacos , Neurônios/patologia , Saponinas/farmacologia , Saponinas/uso terapêutico , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico
16.
J Nat Prod ; 79(7): 1834-41, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27400231

RESUMO

An aqueous extract of Eleutherococcus senticosus leaves exerted a beneficial effect in restoring the neurite outgrowth from Aß25-35-induced degeneration using an axonal density assay. Subsequent bioassay-guided fractionation afforded seven new oleanane-type triterpene saponins, ezoukoginosides A-G (1-7), along with nine known analogues. The structures of 1-7 were elucidated through chemical and spectroscopic approaches, and their effects on restoring the neurite outgrowth from Aß25-35-induced degeneration were investigated. The results revealed that hydrophilic oleanane-type saponins substituted with a free carboxylic acid, hydroxy, or formyl group in the aglycone, especially when the oxidation occurred at C-29, not only restrained Aß25-35-induced degeneration but also restored axonal outgrowth significantly. Compounds 2 (-COOH at C-29) and 3 (-CH2OH at C-29) showed the most potent bioactivity among the isolates.


Assuntos
Eleutherococcus/química , Crescimento Neuronal/efeitos dos fármacos , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Folhas de Planta/química , Saponinas/isolamento & purificação , Saponinas/farmacologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Animais , Feminino , Japão , Camundongos , Estrutura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Gravidez , Saponinas/química
17.
J Nat Prod ; 78(9): 2297-300, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26299900

RESUMO

Axonal regeneration might contribute to the restoration of damaged neuronal networks and improvement of memory deficits in a murine Alzheimer's disease (AD) model. A search for axonal regenerative drugs was performed to discover novel therapeutic options for AD. In this study, an aqueous extract of Drynaria fortunei rhizomes reversed Aß25-35-induced axonal atrophy in cultured cortical neurons of mice. Bioassay-guided fractionation of this extract led to the isolation and identification of compounds 1-5. Among them, (2S)-neoeriocitrin (2) and caffeic acid 4-O-glucoside (4) showed significant axonal elongation effects on Aß25-35-induced atrophy.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Fragmentos de Peptídeos/farmacologia , Polypodiaceae/química , Doença de Alzheimer/tratamento farmacológico , Animais , Atrofia/induzido quimicamente , Axônios/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Camundongos , Estrutura Molecular , Neurônios/efeitos dos fármacos , Rizoma/química
19.
Phytother Res ; 29(3): 351-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25346293

RESUMO

Traditional medicine is widely used in East Asia, and studies that demonstrate its usefulness have recently become more common. However, formulation-based studies are not globally understood because these studies are country-specific. There are many types of formulations that have been introduced to Japan and Korea from China. Establishing whether a same-origin formulation has equivalent effects in other countries is important for the development of studies that span multiple countries. The present study compared the effects of same-origin traditional medicine used in Japan and Korea in an in vivo experiment. We prepared drugs that had the same origin and the same components. The drugs are called kamikihito (KKT) in Japan and kami-guibi-tang (KGT) in Korea. KKT (500 mg extract/kg/day) and KGT (500 mg extract/kg/day) were administered to ddY mice, and object recognition and location memory tests were performed. KKT and KGT administration yielded equivalent normal memory enhancement effects. 3D-HPLC showed similar, but not identical, patterns of the detected compounds between KKT and KGT. This comparative research approach enables future global clinical studies of traditional medicine to be conducted through the use of the formulations prescribed in each country.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Memória/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Japão , Masculino , Camundongos , República da Coreia , Equivalência Terapêutica
20.
Biol Pharm Bull ; 37(6): 892-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24882401

RESUMO

Neurodegenerative diseases commonly induce irreversible destruction of central nervous system (CNS) neuronal networks, resulting in permanent functional impairments. Effective medications against neurodegenerative diseases are currently lacking. Ashwagandha (roots of Withania somnifera Dunal) is used in traditional Indian medicine (Ayurveda) for general debility, consumption, nervous exhaustion, insomnia, and loss of memory. In this review, we summarize various effects and mechanisms of Ashwagandha extracts and related compounds on in vitro and in vivo models of neurodegenerative diseases such as Alzheimer's disease and spinal cord injury.


Assuntos
Ayurveda , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Withania/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Humanos , Estrutura Molecular , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA