Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 12(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260552

RESUMO

Ingesting oolong tea or caffeine acutely increases energy expenditure, and oolong tea, but not caffeine, stimulates fat oxidation. The acute effects of caffeine, such as increased heart rate and interference with sleep, diminish over 1-4 days, known as caffeine tolerance. During each 14-day session of the present study, 12 non-obese males consumed oolong tea (100 mg caffeine, 21.4 mg gallic acid, 97 mg catechins and 125 mg polymerized polyphenol), caffeine (100 mg), or placebo at breakfast and lunch. On day 14 of each session, 24-h indirect calorimetry and polysomnographic sleep recording were performed. Caffeine and oolong tea increased fat oxidation by ~20% without affecting energy expenditure over 24-h. The decrease in the respiratory quotient by oolong tea was greater than that by caffeine during sleep. The effect of oolong tea on fat oxidation was salient in the post-absorptive state. These findings suggest a role of unidentified ingredients in oolong tea to stimulate fat oxidation, and this effect is partially suppressed in a postprandial state. Two weeks of caffeine or oolong tea ingestion increased fat oxidation without interfering with sleep. The effects of subacute ingestion of caffeine and oolong tea differed from the acute effects, which is a particularly important consideration regarding habitual tea consumption.


Assuntos
Cafeína/farmacologia , Metabolismo Energético/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Sono/efeitos dos fármacos , Chá , Adulto , Cafeína/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino
2.
J Cachexia Sarcopenia Muscle ; 11(1): 241-258, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32003547

RESUMO

BACKGROUND: Skeletal muscle is mainly responsible for insulin-stimulated glucose disposal. Dysfunction in skeletal muscle metabolism especially during obesity contributes to the insulin resistance. Astaxanthin (AX), a natural antioxidant, has been shown to ameliorate hepatic insulin resistance in obese mice. However, its effects in skeletal muscle are poorly understood. The current study aimed to investigate the molecular target of AX in ameliorating skeletal muscle insulin resistance. METHODS: We fed 6-week-old male C57BL/6J mice with normal chow (NC) or NC supplemented with AX (NC+AX) and high-fat-diet (HFD) or HFD supplemented with AX for 24 weeks. We determined the effect of AX on various parameters including insulin sensitivity, glucose uptake, inflammation, kinase signaling, gene expression, and mitochondrial function in muscle. We also determined energy metabolism in intact C2C12 cells treated with AX using the Seahorse XFe96 Extracellular Flux Analyzer and assessed the effect of AX on mitochondrial oxidative phosphorylation and mitochondrial biogenesis. RESULTS: AX-treated HFD mice showed improved metabolic status with significant reduction in blood glucose, serum total triglycerides, and cholesterol (p< 0.05). AX-treated HFD mice also showed improved glucose metabolism by enhancing glucose incorporation into peripheral target tissues, such as the skeletal muscle, rather than by suppressing gluconeogenesis in the liver as shown by hyperinsulinemic-euglycemic clamp study. AX activated AMPK in the skeletal muscle of the HFD mice and upregulated the expressions of transcriptional factors and coactivator, thereby inducing mitochondrial remodeling, including increased mitochondrial oxidative phosphorylation component and free fatty acid metabolism. We also assessed the effects of AX on mitochondrial biogenesis in the siRNA-mediated AMPK-depleted C2C12 cells and showed that the effect of AX was lost in the genetically AMPK-depleted C2C12 cells. Collectively, AX treatment (i) significantly ameliorated insulin resistance and glucose intolerance through regulation of AMPK activation in the muscle, (ii) stimulated mitochondrial biogenesis in the muscle, (iii) enhanced exercise tolerance and exercise-induced fatty acid metabolism, and (iv) exerted antiinflammatory effects via its antioxidant activity in adipose tissue. CONCLUSIONS: We concluded that AX treatment stimulated mitochondrial biogenesis and significantly ameliorated insulin resistance through activation of AMPK pathway in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fibrinolíticos/uso terapêutico , Resistência à Insulina/fisiologia , Mitocôndrias Musculares/metabolismo , Animais , Fibrinolíticos/farmacologia , Humanos , Masculino , Camundongos , Biogênese de Organelas , Xantofilas/farmacologia , Xantofilas/uso terapêutico
3.
PLoS One ; 13(6): e0198858, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902225

RESUMO

The fatty acid composition of the diet has been linked to the prevalence of diabetes and cardiovascular diseases. Compared with monounsaturated fatty acids, saturated fatty acids decrease fat oxidation and diet-induced thermogenesis. A potential limitation of previous studies was the short duration (≦5h) of calorimetry used. The present study compared the effects of a meal rich in saturated and unsaturated fatty acids on 24-h of fat oxidation. Ten males participated in two sessions of indirect calorimetry in a whole-room metabolic chamber. At each session, subjects consumed three meals rich in palm oil (44.3% as saturated, 42.3% as monounsaturated and 13.4% as polyunsaturated fatty acid) or rapeseed oil (11.7% as saturated, 59.3% as monounsaturated and 29.0% as polyunsaturated fatty acid). Fat oxidation over 24-h was significantly higher in the meal rich in rapeseed oil (779 ± 202 kcal/day) than that rich in palm oil (703 ± 158 kcal/day, P < 0.05), although energy expenditure was similar between both meal conditions. Meal rich in unsaturated fatty acids increased the oxidation of exogenous and/or endogenous fat. The results of a long calorimetry period indicate that rapeseed oil offered an advantage toward increased 24-h fat oxidation in healthy young males.


Assuntos
Ácidos Graxos/metabolismo , Refeições , Óleo de Palmeira/farmacologia , Óleo de Brassica napus/farmacologia , Adulto , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Masculino , Oxirredução/efeitos dos fármacos , Fatores de Tempo
4.
Br J Nutr ; 117(7): 979-984, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28412986

RESUMO

Chlorogenic acids (CGA) are the most abundant polyphenols in coffee. Continuous consumption of CGA reduces body fat and body weight. Since energy metabolism and sleep are controlled by common regulatory factors, consumption of CGA might modulate sleep. Lack of sleep has been identified as a risk factor for obesity, hypertension and type 2 diabetes. The aim of this study was to determine the effects of ingesting CGA over 5 d on energy metabolism and sleep quality in humans. A total of nine healthy subjects (four male and five female) completed a placebo-controlled, double-blinded, cross-over intervention study. Subjects consumed a test beverage containing 0 or 600 mg of CGA for 5 d. On the fifth night, subjects stayed in a whole-room metabolic chamber to measure energy metabolism; sleep was evaluated using polysomnographic recording. It was found that CGA shortened sleep latency (9 (sem 2) v. 16 (sem 4) min, P<0·05) compared with the control, whereas no effect on sleep architecture, such as slow-wave sleep, rapid eye movement or waking after sleep onset, was observed. Indirect calorimetry revealed that consumption of CGA increased fat oxidation (510 (sem 84) kJ/8 h (122 (sem 20) kcal/8 h) v. 331 (sem 79) kJ/8 h (81 (sem 19) kcal/8 h), P<0·05) but did not affect energy expenditure during sleep. Consumption of CGA enhanced parasympathetic activity assessed from heart-rate variability during sleep (999 (sem 77) v. 919 (sem 54), P<0·05). A period of 5-d CGA consumption significantly increased fat oxidation during sleep, suggesting that beverages containing CGA may be beneficial to reduce body fat and prevent obesity. Consumption of CGA shortened sleep latency and did not adversely affect sleep quality.


Assuntos
Fármacos Antiobesidade/efeitos adversos , Sistema Nervoso Autônomo/fisiologia , Ácido Clorogênico/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Metabolismo dos Lipídeos , Nootrópicos/efeitos adversos , Sono , Adulto , Sistema Nervoso Autônomo/fisiopatologia , Bebidas/efeitos adversos , Biomarcadores/urina , Calorimetria Indireta , Estudos Cross-Over , Método Duplo-Cego , Feminino , Frequência Cardíaca , Humanos , Masculino , Polissonografia , Testes de Toxicidade Subaguda , Adulto Jovem
5.
Nat Med ; 23(4): 508-516, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263310

RESUMO

Exercise has numerous health-promoting effects in humans; however, individual responsiveness to exercise with regard to endurance or metabolic health differs markedly. This 'exercise resistance' is considered to be congenital, with no evident acquired causative factors. Here we show that the anti-oxidative hepatokine selenoprotein P (SeP) causes exercise resistance through its muscle receptor low-density lipoprotein receptor-related protein 1 (LRP1). SeP-deficient mice showed a 'super-endurance' phenotype after exercise training, as well as enhanced reactive oxygen species (ROS) production, AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferative activated receptor γ coactivator (Ppargc)-1α (also known as PGC-1α; encoded by Ppargc1a) expression in skeletal muscle. Supplementation with the anti-oxidant N-acetylcysteine (NAC) reduced ROS production and the endurance capacity in SeP-deficient mice. SeP treatment impaired hydrogen-peroxide-induced adaptations through LRP1 in cultured myotubes and suppressed exercise-induced AMPK phosphorylation and Ppargc1a gene expression in mouse skeletal muscle-effects which were blunted in mice with a muscle-specific LRP1 deficiency. Furthermore, we found that increased amounts of circulating SeP predicted the ineffectiveness of training on endurance capacity in humans. Our study suggests that inhibitors of the SeP-LRP1 axis may function as exercise-enhancing drugs to treat diseases associated with a sedentary lifestyle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Condicionamento Físico Animal , Resistência Física/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/metabolismo , Selenoproteína P/genética , Proteínas Supressoras de Tumor/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Exercício Físico , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Condicionamento Físico Humano , Resistência Física/efeitos dos fármacos , Selenoproteína P/metabolismo , Regulação para Cima
6.
Nature ; 503(7477): 493-9, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24172895

RESUMO

Adiponectin secreted from adipocytes binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR-α pathways, respectively. Levels of adiponectin in plasma are reduced in obesity, which causes insulin resistance and type 2 diabetes. Thus, orally active small molecules that bind to and activate AdipoR1 and AdipoR2 could ameliorate obesity-related diseases such as type 2 diabetes. Here we report the identification of orally active synthetic small-molecule AdipoR agonists. One of these compounds, AdipoR agonist (AdipoRon), bound to both AdipoR1 and AdipoR2 in vitro. AdipoRon showed very similar effects to adiponectin in muscle and liver, such as activation of AMPK and PPAR-α pathways, and ameliorated insulin resistance and glucose intolerance in mice fed a high-fat diet, which was completely obliterated in AdipoR1 and AdipoR2 double-knockout mice. Moreover, AdipoRon ameliorated diabetes of genetically obese rodent model db/db mice, and prolonged the shortened lifespan of db/db mice on a high-fat diet. Thus, orally active AdipoR agonists such as AdipoRon are a promising therapeutic approach for the treatment of obesity-related diseases such as type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Longevidade/efeitos dos fármacos , Obesidade/fisiopatologia , Piperidinas/farmacologia , Receptores de Adiponectina/agonistas , Adenilato Quinase/metabolismo , Adiponectina/metabolismo , Adiponectina/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Administração Oral , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Dislipidemias/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Inflamação/tratamento farmacológico , Resistência à Insulina , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculos/citologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Piperidinas/administração & dosagem , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Receptores de Adiponectina/deficiência , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/biossíntese , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA