Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 83: 89-100, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725417

RESUMO

The manganese porphyrin, manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin (MnTE-2-PyP(5+)), acts as a pro-oxidant in the presence of intracellular H2O2. Mitochondria are the most prominent source of intracellular ROS and important regulators of the intrinsic apoptotic pathway. Due to the increased oxidants near and within the mitochondria, we hypothesized that the mitochondria are a target of the pro-oxidative activity of MnTE-2-PyP(5+) and that we could exploit this effect to enhance the chemotherapeutic response in lymphoma. In this study, we demonstrate that MnTE-2-PyP(5+) modulates the mitochondrial redox environment and sensitizes lymphoma cells to antilymphoma chemotherapeutics. MnTE-2-PyP(5+) increased dexamethasone-induced mitochondrial ROS and oxidation of the mitochondrial glutathione pool in lymphoma cells. The combination treatment induced glutathionylation of Complexes I, III, and IV in the electron transport chain, and decreased the activity of Complexes I and III, but not the activity of Complex IV. Treatment with the porphyrin and dexamethasone also decreased cellular ATP levels. Rho(0) malignant T-cells with impaired mitochondrial electron transport chain function were less sensitive to the combination treatment than wild-type cells. These findings suggest that mitochondria are important for the porphyrin's ability to enhance cell death. MnTE-2-PyP(5+) also augmented the effects of 2-deoxy-D-glucose (2DG), an antiglycolytic agent. In combination with 2DG, MnTE-2-PyP(5+) increased protein glutathionylation, decreased ATP levels more than 2DG treatment alone, and enhanced 2DG-induced cell death in primary B-ALL cells. MnTE-2-PyP(5+) did not enhance dexamethasone- or 2DG-induced cell death in normal cells. Our findings suggest that MnTE-2-PyP(5+) has potential as an adjuvant for the treatment of hematologic malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metaloporfirinas/farmacologia , Oxidantes/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Neoplasias do Timo/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia , Células Tumorais Cultivadas
2.
Free Radic Biol Med ; 60: 157-67, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23416365

RESUMO

Chemoresistance due to oxidative stress resistance or upregulation of Bcl-2 contributes to poor outcome in the treatment of hematological malignancies. In this study, we utilize the copper-chelator drug ATN-224 (choline tetrathiomolybdate) to induce cell death in oxidative stress-resistant cells and cells overexpressing Bcl-2 by modulating the cellular redox environment and causing mitochondrial dysfunction. ATN-224 treatment decreases superoxide dismutase 1 (SOD1) activity, increases intracellular oxidants, and induces peroxynitrite-dependent cell death. ATN-224 also targets the mitochondria, decreasing both cytochrome c oxidase (CcOX) activity and mitochondrial membrane potential. The concentration of ATN-224 required to induce cell death is proportional to SOD1 levels, but independent of Bcl-2 status. In combination with doxorubicin, ATN-224 enhances cell death. In primary B-cell acute lymphoblastic leukemia patient samples, ATN-224 decreases the viable cell number. Our findings suggest that ATN-224's dual targeting of SOD1 and CcOX is a promising approach for treatment of hematological malignancies either as an adjuvant or as a single agent.


Assuntos
Quelantes/administração & dosagem , Neoplasias Hematológicas/tratamento farmacológico , Molibdênio/administração & dosagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Linfócitos B/citologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/fisiopatologia , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ácido Peroxinitroso/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2 , Estresse Fisiológico/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Células U937
3.
Cancer Epidemiol Biomarkers Prev ; 16(8): 1662-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17684143

RESUMO

PURPOSE: Green tea consumption has been associated with decreased risk of certain types of cancers in humans. Induction of detoxification enzymes has been suggested as one of the biochemical mechanisms responsible for the cancer-preventive effect of green tea. We conducted this clinical study to determine the effect of repeated green tea polyphenol administration on a major group of detoxification enzymes, glutathione S-transferases (GST). METHODS: A total of 42 healthy volunteers underwent a 4-week washout period by refraining from tea or tea-related products. At the end of the washout period, a fasting blood sample was collected, and plasma and lymphocytes were isolated for assessment of GST activity and level. Following the baseline evaluation, study participants underwent 4 weeks of green tea polyphenol intervention in the form of a standardized Polyphenon E preparation at a dose that contains 800 mg epigallocatechin gallate (EGCG) once a day. Polyphenon E was taken on an empty stomach to optimize the oral bioavailability of EGCG. Upon completion of the intervention, samples were collected for postintervention GST assessment. RESULTS: Four weeks of Polyphenon E intervention enhanced the GST activity in blood lymphocytes from 30.7 +/- 12.2 to 35.1 +/- 14.3 nmol/min/mg protein, P = 0.058. Analysis based on baseline activity showed that a statistically significant increase (80%, P = 0.004) in GST activity was observed in individuals with baseline activity in the lowest tertile, whereas a statistically significant decrease (20%, P = 0.02) in GST activity was observed in the highest tertile. In addition, Polyphenon E intervention significantly increased the GST-pi level in blood lymphocytes from 2,252.9 +/- 734.2 to 2,634.4 +/- 1,138.3 ng/mg protein, P = 0.035. Analysis based on baseline level showed that this increase was only significant (P = 0.003) in individuals with baseline level in the lowest tertile, with a mean increase of 80%. Repeated Polyphenon E administration had minimal effects on lymphocyte GST-mu and plasma GST-alpha levels. There was a small but statistically significant decrease (8%, P = 0.003) in plasma GST-alpha levels in the highest tertile. CONCLUSIONS: We conclude that 4 weeks of Polyphenon E administration resulted in differential effects on GST activity and level based on baseline enzyme activity/level, with GST activity and GST-pi level increased significantly in individuals with low baseline enzyme activity/level. This suggests that green tea polyphenol intervention may enhance the detoxification of carcinogens in individuals with low baseline detoxification capacity.


Assuntos
Catequina/análogos & derivados , Glutationa Transferase/sangue , Chá , Catequina/administração & dosagem , Catequina/farmacologia , Feminino , Glutationa S-Transferase pi/sangue , Glutationa S-Transferase pi/efeitos dos fármacos , Glutationa Transferase/efeitos dos fármacos , Humanos , Isoenzimas/sangue , Isoenzimas/efeitos dos fármacos , Linfócitos/enzimologia , Masculino , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia
4.
Biochem Pharmacol ; 69(5): 811-8, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15710358

RESUMO

Cancer chemotherapy is often limited by patient's toxicity and tumor drug resistance indicating that new drug development and modification of existing drugs is critical for improving the therapeutic response. Traditional Chinese medicine is a rich source of potential anticancer agents. In particular, cantharidin (CAN), the active principle ingredient from the blister beetle, Mylabris, has anti-tumor activity, but the cytotoxic mechanism is unknown. In leukemia cells, cantharidin induces apoptosis by a p53-dependent mechanism. Cantharidin causes both DNA single- and double-strand breaks. Colony-forming assays with knockout and transfectant cells lines showed that DNA polymerase beta, but not ERCC1, conferred increased cell survival after cantharidin treatment, indicating that base excision repair (BER), rather than nucleotide excision repair (NER), is important for CAN-induced DNA lesions. Oxidative stress-resistant thymic lymphoma-derived WEHI7.2 variants are also more resistant to cantharidin. These data suggest that cantharidin treatment causes oxidative stress that provokes DNA damage and p53-dependent apoptosis.


Assuntos
Antineoplásicos/farmacologia , Cantaridina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Humanos , Estresse Oxidativo
5.
Int J Oncol ; 23(4): 1231-5, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12964009

RESUMO

The antimalaria drug, artesunate (ART), is very cytotoxic in tumor cell lines. The active moiety of ART is an endoperoxide bridge that generates carbon-centered free radicals and oxidative stress upon cleavage. Oxidative stress appears to be necessary for the antimalarial activity of ART. To test whether antioxidant gene expression affects the ART response in tumor cell lines we compared the baseline antioxidant mRNA gene expression in the 55 human tumor cell line panel from the National Cancer Institute Developmental Therapeutics Program to the ART IC50. Thioredoxin reductase expression showed a significant positive correlation to the ART IC50 and catalase expression was inversely correlated with the ART IC50 (p<0.05). WEHI7.2 mouse thymoma cells selected for resistance to hydrogen peroxide or transfected with thioredoxin, manganese superoxide dismutase, catalase or bcl-2 showed resistance to ART compared to the parental cell line. Taken together these data support a role for oxidative stress in the mechanism of ART action in tumor cells and suggest that antioxidant defenses act in combination to affect the cellular response to ART.


Assuntos
Antioxidantes/farmacologia , Artemisininas/farmacologia , Sesquiterpenos/farmacologia , Animais , Artesunato , Carbono/química , Catalase/metabolismo , Linhagem Celular Tumoral , DNA Complementar/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Concentração Inibidora 50 , Camundongos , Estresse Oxidativo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Tiorredoxinas/metabolismo , Timoma/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA