Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nat Med ; 76(3): 686-692, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445961

RESUMO

Metastasis is responsible for approximately 90% of cancer-associated mortality and proceeds through multiple steps. Several herbal medicines are reported to inhibit primary tumor growth, but the suppressor effects of the medicines on metastasis progression are still not fully elucidated. Here we report that cinnamon bark extract (CBE) has a suppressor effect on metastatic dissemination of cancer cells. Through a phenotypic screening using zebrafish embryos, CBE was identified to interfere with the gastrulation progression of zebrafish embryos, of which the molecular mechanisms are conserved in metastasis progression. A Boyden chamber assay showed that CBE decreased cell motility and invasion of MDA-MB-231 human breast cancer cells without affecting their cell viability. Furthermore, CBE suppressed metastatic dissemination of the cells in a zebrafish xenotransplantation model. Quantitative metabolome analyses revealed that the productions of glucose-6-phosphate (G6P) and fructose 6-phosphate which are intermediate metabolites of glycolytic metabolism were interrupted in CBE-treated cells. qPCR and western-blotting analyses revealed that CBE-treated cells showed decreased expression of hexokinase 2 (HK2) which yields G6P. Pharmacological inhibition of HK2 with 2-deoxy-D-glucose suppressed cell invasion and migration of the cells without affecting their cell viability. Taken together, CBE suppresses metastatic dissemination of cancer cells through inhibition of glycolysis metabolism.


Assuntos
Neoplasias da Mama , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cinnamomum zeylanicum , Feminino , Glicólise , Humanos , Casca de Planta , Extratos Vegetais/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-33747108

RESUMO

BACKGROUND: Based on the theory of traditional Chinese medicine, Chinese herbs possess four different medicinal properties: hot, warm, cold, and cool. These serve as a reference guide for these herbal medicines. However, the molecular mechanisms supporting their relevance remain unclear. METHODS: We performed metabolomics based on capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF/MS) and multivariate data analysis for the structural identification of compounds of cold- and hot-natured Chinese herbs. RESULTS: To this end, 30 selected herbs were analyzed and a total of 416 metabolites were identified via CE-TOF/MS, of which 193 compounds were detected in most herbs. The observed profiles offered the potential to understand the mechanism of association between the compounds and nature of the Chinese herbs. Comparison of the similarity in terms of chemical and molecular structures and content revealed that hot-natured herbs contained more nucleotides. In contrast, principal component analysis revealed the presence of more amino acid compounds in cold-natured herbs. CONCLUSION: Comparing the structural similarities between the samples using the Tanimoto coefficient revealed that a general non-specific structure was observed between cold- and hot-natured herbs; however, the distribution of the molecular groups seemed to contribute more toward the energy properties.

3.
Sci Rep ; 5: 13896, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26350063

RESUMO

Intravenous administration of high-dose vitamin C has recently attracted attention as a cancer therapy. High-dose vitamin C induces pro-oxidant effects and selectively kills cancer cells. However, the anticancer mechanisms of vitamin C are not fully understood. Here, we analyzed metabolic changes induced by vitamin C in MCF7 human breast adenocarcinoma and HT29 human colon cancer cells using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). The metabolomic profiles of both cell lines were dramatically altered after exposure to cytotoxic concentrations of vitamin C. Levels of upstream metabolites in the glycolysis pathway and tricarboxylic acid (TCA) cycle were increased in both cell lines following treatment with vitamin C, while adenosine triphosphate (ATP) levels and adenylate energy charges were decreased concentration-dependently. Treatment with N-acetyl cysteine (NAC) and reduced glutathione (GSH) significantly inhibited vitamin C-induced cytotoxicity in MCF7 cells. NAC also suppressed vitamin C-dependent metabolic changes, and NAD treatment prevented vitamin C-induced cell death. Collectively, our data suggests that vitamin C inhibited energy metabolism through NAD depletion, thereby inducing cancer cell death.


Assuntos
Ácido Ascórbico/metabolismo , Metaboloma , Metabolômica , Neoplasias/metabolismo , Estresse Oxidativo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Células MCF-7 , Metabolômica/métodos , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-26798400

RESUMO

Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24110286

RESUMO

A plethora of data is accumulating from high throughput methods on metabolites, coenzymes, proteins, and nucleic acids and their interactions as well as the signalling and regulatory functions and pathways of the cellular network. The frozen moment viewed in a single discrete time sample requires frequent repetition and updating before any appreciation of the dynamics of component interaction becomes possible. Even then in a sample derived from a cell population, time-averaging of processes and events that occur in out-of-phase individuals blur the detailed complexity of single cell organization. Continuously-grown cultures of yeast can become spontaneously self-synchronized, thereby enabling resolution of far more detailed temporal structure. Continuous on-line monitoring by rapidly responding sensors (O2 electrode and membrane-inlet mass spectrometry for O2, CO2 and H2S; direct fluorimetry for NAD(P)H and flavins) gives dynamic information from time-scales of minutes to hours. Supplemented with capillary electophoresis and gas chromatography mass spectrometry and transcriptomics the predominantly oscillatory behaviour of network components becomes evident, with a 40 min cycle between a phase of increased respiration (oxidative phase) and decreased respiration (reductive phase). Highly pervasive, this ultradian clock provides a coordinating function that links mitochondrial energetics and redox balance to transcriptional regulation, mitochondrial structure and organelle remodelling, DNA duplication and cell division events. Ultimately, this leads to a global partitioning of anabolism and catabolism and the enzymes involved, mediated by a relatively simple ATP feedback loop on chromatin architecture.


Assuntos
Metabolismo Energético , Saccharomyces cerevisiae/crescimento & desenvolvimento , Difosfato de Adenosina/análise , Trifosfato de Adenosina/análise , Montagem e Desmontagem da Cromatina , Análise por Conglomerados , DNA/metabolismo , Dinitrocresóis/química , Eletroforese Capilar , Cromatografia Gasosa-Espectrometria de Massas , Mitocôndrias/química , Mitocôndrias/metabolismo , NAD/química , Oxirredução , Espécies Reativas de Oxigênio/química , Saccharomyces cerevisiae/metabolismo , Transcriptoma
6.
Metabolomics ; 9(1): 247-257, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23335869

RESUMO

In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sessile states. Spermidine was detected in intra- and extracellular samples for both strains, suggesting it has an important role in biofilm formation in the presence of solid substrate. The canonical pathway for spermidine synthesis seems absent as its upstream precursor, putrescine, was not present in samples. Glutathione, a catalytic activator of elemental sulfur, was identified as one of the most abundant metabolites in the intracellular space in A. thiooxidans strain Licanantay, confirming its participation in the sulfur oxidation pathway. Amino acid profiles varied according to the growth conditions and bioleaching species. Glutamic and aspartic acid were highly abundant in intra- and extracellular extracts. Both are constituents of the extracellular matrix, and have a probable role in cell detoxification. This novel metabolomic information validates previous knowledge from in silico metabolic reconstructions based on genomic sequences, and reveals important biomining functions such as biofilm formation, energy management and stress responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0443-3) contains supplementary material, which is available to authorized users.

7.
Sci Rep ; 2: 930, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226596

RESUMO

To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.


Assuntos
Blastocisto , Ácidos Graxos/metabolismo , Animais , Caprilatos/metabolismo , Ciclo do Ácido Cítrico , Eletroforese Capilar , Metabolismo Energético , Regulação da Expressão Gênica , Espectrometria de Massas , Camundongos , Oxirredução
8.
Yeast ; 28(2): 109-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20936605

RESUMO

Sulfite (SO(2) ) plays an important role in flavour stability in alcoholic beverages, whereas hydrogen sulfide (H(2) S) has an undesirable aroma. To discover the cellular processes that control SO(2) and H(2) S production, we screened a library of Saccharomyces cerevisiae deletion mutants. Deletion of 12 genes led to increased H(2) S productivity. Ten of these genes are known to be involved in sulfur-containing amino acid metabolism, whereas UBI4 functions in the ubiquitin-proteasome system and SKP2 encodes an F-box-containing protein whose function is unknown. We found that the skp2 mutant accumulated H(2) S and SO(2) , because the adenosylphophosulfate kinase Met14p is a substrate of SCF(Skp2) and more stable in the skp2 mutant than in the wild-type strain. Furthermore, the skp2 mutant grew more slowly than the wild-type strain under nutrient-limited conditions. Metabolome analysis showed that the concentration of intracellular cysteine is lower in the skp2 mutant than in the wild-type strain. The slow growth of the skp2 mutant was due to a lower concentration of intracellular cysteine, because the addition of cysteine suppressed the slow growth. In the skp2 mutant, the cysteine biosynthesis proteins Str2p, Str3p and Str4p are more stable than in the wild-type strain. Moreover, supplementation with methionine, S-adenosylmethionine, S-adenosylhomocysteine and homocysteine also suppressed the slow growth. Overexpression of STR1 or STR4 caused a more severe defect in the skp2 mutant. These results suggest that the balance of methionine and cysteine biosynthesis is important for yeast cell growth. Thus, Skp2p is one of the key components regulating this balance and H(2) S/SO(2) production.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Dióxido de Enxofre/metabolismo , Meios de Cultura/química , Cisteína/metabolismo , Deleção de Genes , Genes Fúngicos , Metaboloma , Metionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
9.
Mol Syst Biol ; 4: 193, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18463617

RESUMO

Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome-wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high-accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high-confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine-specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho-residues in Arabidopsis is similar to that in humans, where over 90 tyrosine-specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.


Assuntos
Arabidopsis/metabolismo , Fosfotirosina/análise , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/química , Sequência Conservada , Fosfoproteínas/química , Fosforilação , Fosfosserina/análise , Fosfotreonina/análise , Fosfotirosina/química , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Proteoma/análise , Proteoma/química , Homologia de Sequência de Aminoácidos
10.
J Chromatogr A ; 1159(1-2): 125-33, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17543971

RESUMO

A method for the determination of nucleotides based on pressure-assisted capillary electrophoresis-electrospray ionization mass spectrometry (PACE-MS) is described. To prevent multi-phosphorylated species from adsorbing onto the fused-silica capillary, silanol groups were masked with phosphate ions by preconditioning the capillary with the background electrolyte containing phosphate. During preconditioning, nebulizer gas was turned off to avoid contamination of MS detector with phosphate ions. To detect nucleotides using the CE positive mode at a pH 7.5, it was necessary to apply air pressure to the inlet capillary during electrophoresis to supplement the electroosmotic flow (EOF) toward the cathode. Moreover, we exchanged the running electrolyte every analysis using the buffer replenishment system to obtain the required reproducibility. Under the optimized conditions, 14 phosphorylated species such as nucleotides, nicotinamide-adenine dinucleotides and coenzyme A (CoA) compounds were well determined in less than 20 min. The relative standard deviations (n=6) of the method were better than 0.9% for migration times and between 1.7% and 8.1% for peak areas. The detection limits for these species were between 0.5 and 1.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL) at a signal-to-noise ratio of 3. This approach is robust and quantitative compared to the previous method, and its utility is demonstrated by the analysis of intracellular nucleotides and CoA compounds extracted from Escherichia coli wild type, pfkA and pfkB knockout mutants. The methodology was used to suggest that pfkA is the main functional enzyme.


Assuntos
Eletroforese Capilar/métodos , Nucleotídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Coenzima A/análise , Eletrólitos , Eletro-Osmose , Proteínas de Escherichia coli/química , Fosfatos/química , Pressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Silanos/química , Integração de Sistemas
11.
Genomics Proteomics Bioinformatics ; 3(3): 179-88, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16487083

RESUMO

We have developed a comprehensive software suite for bioinformatics research of cDNAs; it is aimed at rapid characterization of the features of genes and the proteins they code. Methods implemented include the detection of translation initiation and termination signals, statistical analysis of codon usage, comparative study of amino acid composition, comparative modeling of the structures of product proteins, prediction of alternative splice forms, and metabolic pathway reconstruction.


Assuntos
DNA Complementar/análise , Software , Processamento Alternativo , Aminoácidos/análise , Animais , Análise por Conglomerados , Códon de Iniciação , Códon de Terminação , Biologia Computacional , Internet , Dados de Sequência Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA