Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37261917

RESUMO

Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.


Assuntos
Glucose , Hipoglicemia , Animais , Camundongos , Anoctaminas , Glicemia , Glucose/farmacologia , Hipoglicemia/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
2.
Sci Rep ; 12(1): 22044, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543829

RESUMO

Environmental cues and internal states such as mood, reward, or aversion directly influence feeding behaviors beyond homeostatic necessity. The hypothalamus has been extensively investigated for its role in homeostatic feeding. However, many of the neural circuits that drive more complex, non-homeostatic feeding that integrate valence and sensory cues (such as taste and smell) remain unknown. Here, we describe a basal forebrain (BF)-to-lateral habenula (LHb) circuit that directly modulates non-homeostatic feeding behavior. Using viral-mediated circuit mapping, we identified a population of glutamatergic neurons within the BF that project to the LHb, which responds to diverse sensory cues, including aversive and food-related odors. Optogenetic activation of BF-to-LHb circuitry drives robust, reflexive-like aversion. Furthermore, activation of this circuitry suppresses the drive to eat in a fasted state. Together, these data reveal a role of basal forebrain glutamatergic neurons in modulating LHb-associated aversion and feeding behaviors by sensing environmental cues.


Assuntos
Prosencéfalo Basal , Habenula , Habenula/fisiologia , Prosencéfalo Basal/fisiologia , Afeto , Hipotálamo/fisiologia , Comportamento Alimentar , Vias Neurais/fisiologia
3.
Protein Cell ; 13(6): 394-421, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826123

RESUMO

Obesity and aging are two important epidemic factors for metabolic syndrome and many other health issues, which contribute to devastating diseases such as cardiovascular diseases, stroke and cancers. The brain plays a central role in controlling metabolic physiology in that it integrates information from other metabolic organs, sends regulatory projections and orchestrates the whole-body function. Emerging studies suggest that brain dysfunction in sensing various internal cues or processing external cues may have profound effects on metabolic and other physiological functions. This review highlights brain dysfunction linked to genetic mutations, sex, brain inflammation, microbiota, stress as causes for whole-body pathophysiology, arguing brain dysfunction as a root cause for the epidemic of aging and obesity-related disorders. We also speculate key issues that need to be addressed on how to reveal relevant brain dysfunction that underlines the development of these disorders and diseases in order to develop new treatment strategies against these health problems.


Assuntos
Envelhecimento , Hipotálamo , Encéfalo/metabolismo , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Obesidade/metabolismo
4.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879284

RESUMO

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Assuntos
Metabolismo Energético , Jejum/metabolismo , Comportamento Alimentar , Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 2 de Receptor Nuclear/metabolismo , Obesidade/metabolismo , Hipernutrição/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Modelos Animais de Doenças , Jejum/psicologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatologia , Masculino , Camundongos Knockout , Coativador 2 de Receptor Nuclear/genética , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hipernutrição/genética , Hipernutrição/fisiopatologia , Hipernutrição/psicologia , Pró-Opiomelanocortina/genética , Resposta de Saciedade , Transdução de Sinais , Aumento de Peso
5.
Mol Metab ; 44: 101136, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301986

RESUMO

OBJECTIVE: Our laboratory recently identified the centrally circulating α-klotho protein as a novel hypothalamic regulator of food intake and glucose metabolism in mice. The current study aimed to investigate novel molecular effectors of central α-klotho in the arcuate nucleus of the hypothalamus (ARC), while further deciphering its role regulating energy balance in both humans and mice. METHODS: Cerebrospinal fluid (CSF) was collected from 22 adults undergoing lower limb orthopedic surgeries, and correlations between body weight and α-klotho were determined using an α-klotho enzyme-linked immunosorbent assay (ELISA) kit. To investigate the effects of α-klotho on energy expenditure (EE), 2-day intracerebroventricular (ICV) treatment was performed in diet-induced obesity (DIO) mice housed in TSE Phenomaster indirect calorimetry metabolic cages. Immunohistochemical staining for cFOS and patch clamp electrophysiology were used to determine the effects of central α-klotho on proopiomelanocortin (POMC) and tyrosine hydroxylase (TH) neurons. Additional stainings were performed to determine novel roles for central α-klotho to regulate non-neuronal cell populations in the ARC. Lastly, ICV pretreatment with fibroblast growth factor receptor (FGFR) or PI3kinase inhibitors was performed to determine the intracellular signaling involved in α-klotho-mediated regulation of ARC nuclei. RESULTS: Obese/overweight human subjects had significantly lower CSF α-klotho concentrations compared to lean counterparts (1,044 ± 251 vs. 1616 ± 218 pmol/L, respectively). Additionally, 2 days of ICV α-klotho treatment increased EE in DIO mice. α-Klotho had no effects on TH neuron activity but elicited varied responses in POMC neurons, with 44% experiencing excitatory and 56% experiencing inhibitory effects. Inhibitor experiments identified an α-klotho→FGFR→PI3kinase signaling mechanism in the regulation of ARC POMC and NPY/AgRP neurons. Acute ICV α-klotho treatment also increased phosphorylated ERK in ARC astrocytes via FGFR signaling. CONCLUSION: Our human CSF data provide the first evidence that impaired central α-klotho function may be involved in the pathophysiology of obesity. Furthermore, results in mouse models identify ARC POMC neurons and astrocytes as novel molecular effectors of central α-klotho. Overall, the current study highlights prominent roles of α-klotho→FGFR→PI3kinase signaling in the homeostatic regulation of ARC neurons and whole-body energy balance.


Assuntos
Glucuronidase/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , China , Metabolismo Energético/fisiologia , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Pró-Opiomelanocortina/metabolismo , Transdução de Sinais/fisiologia , Adulto Jovem
6.
EMBO Rep ; 21(7): e49210, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32462726

RESUMO

The current obesity epidemic mainly results from high-fat high-caloric diet (HFD) feeding and may also be contributed by chronic stress; however, the neural basis underlying stress-related diet-induced obesity remains unknown. Corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamus (PVH), a known body weight-regulating region, represent one key group of stress-responsive neurons. Here, we found that HFD feeding blunted PVH CRH neuron response to nutritional challenges as well as stress stimuli and dexamethesone, which normally produce rapid activation and inhibition on these neurons, respectively. We generated mouse models with the activity of these neurons clamped at high or low levels, both of which showed HFD-mimicking, blunted PVH CRH neuron responsiveness. Strikingly, both models developed rapid HFD-induced obesity, associated with HFD-mimicking, reduced diurnal rhythmicity in feeding and energy expenditure. Thus, blunted responsiveness of PVH CRH neurons, but not their absolute activity levels, underlies HFD-induced obesity and may also contribute to stress-induced obesity.


Assuntos
Obesidade , Hormônios Liberadores de Hormônios Hipofisários , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo , Obesidade/etiologia
7.
Nat Commun ; 10(1): 1718, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979869

RESUMO

Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Obesidade/genética , Alelos , Animais , Peso Corporal , Linhagem Celular Tumoral , Cruzamentos Genéticos , Deleção de Genes , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Heterozigoto , Homeostase , Humanos , Leptina/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Obesidade/metabolismo , Fenótipo
8.
Nat Neurosci ; 22(2): 205-217, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664766

RESUMO

Nuclear receptor corepressor 1 (NCOR1) and NCOR2 (also known as SMRT) regulate gene expression by activating histone deacetylase 3 through their deacetylase activation domain (DAD). We show that mice with DAD knock-in mutations have memory deficits, reduced anxiety levels, and reduced social interactions. Mice with NCOR1 and NORC2 depletion specifically in GABAergic neurons (NS-V mice) recapitulated the memory deficits and had reduced GABAA receptor subunit α2 (GABRA2) expression in lateral hypothalamus GABAergic (LHGABA) neurons. This was associated with LHGABA neuron hyperexcitability and impaired hippocampal long-term potentiation, through a monosynaptic LHGABA to CA3GABA projection. Optogenetic activation of this projection caused memory deficits, whereas targeted manipulation of LHGABA or CA3GABA neuron activity reversed memory deficits in NS-V mice. We describe de novo variants in NCOR1, NCOR2 or HDAC3 in patients with intellectual disability or neurodevelopmental disorders. These findings identify a hypothalamus-hippocampus projection that may link endocrine signals with synaptic plasticity through NCOR-mediated regulation of GABA signaling.


Assuntos
Região CA3 Hipocampal/metabolismo , Neurônios GABAérgicos/metabolismo , Hipotálamo/metabolismo , Transtornos da Memória/genética , Memória/fisiologia , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/genética , Animais , Bases de Dados Factuais , Potenciais Pós-Sinápticos Excitadores/genética , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
9.
RSC Adv ; 9(3): 1290-1298, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35518019

RESUMO

Obesity has become a major public health challenge worldwide. Energy imbalance between calorie acquisition and consumption is the fundamental cause of obesity. Notoginsenoside Fe is a naturally occurring compound in Panax notoginseng, a herb used in the treatment of cardiovascular diseases in traditional Chinese medicine. Here, we evaluated the effect of notoginsenoside Fe on obesity development induced by high-fat diet in C57BL/6 mice. Our results demonstrated that notoginsenoside Fe decreased food intake and body weight, as well as protected liver structure integrity and normal function. Metabolic cage analysis showed that notoginsenoside Fe also promoted resting metabolic rate. In addition, intracerebroventricular (i.c.v) injection of notoginsenoside Fe induced C-Fos expression in the paraventricular nucleus (PVH) but not the arcuate nucleus (ARC) of the hypothalamus. These results suggest that Fe may reduce body weight through the activation of energy-sensing neurons in the hypothalamus.

10.
Nat Commun ; 9(1): 1544, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670083

RESUMO

Sexual dimorphism exists in energy balance, but the underlying mechanisms remain unclear. Here we show that the female mice have more pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of hypothalamus than males, and female POMC neurons display higher neural activities, compared to male counterparts. Strikingly, deletion of the transcription factor, TAp63, in POMC neurons confers "male-like" diet-induced obesity (DIO) in female mice associated with decreased POMC neural activities; but the same deletion does not affect male mice. Our results indicate that TAp63 in female POMC neurons contributes to the enhanced POMC neuron functions and resistance to obesity in females. Thus, TAp63 in POMC neurons is one key molecular driver for the sexual dimorphism in energy homeostasis.


Assuntos
Neurônios/metabolismo , Fosfoproteínas/fisiologia , Pró-Opiomelanocortina/metabolismo , Caracteres Sexuais , Transativadores/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Metabolismo Energético/fisiologia , Estrogênios/metabolismo , Feminino , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Receptores para Leptina/metabolismo , Fatores Sexuais
11.
Metabolism ; 79: 10-23, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080813

RESUMO

OBJECTIVE: Growth hormone stimulates growth by increasing insulin-like growth factor 1 expression and secretion. In the presence of insufficient nutrients, GH increases, whereas IGF-1 expression becomes severely suppressed, leading to GH resistance. This study aimed to explore the effect of arginine (Arg) on GH resistance during malnutrition and to describe its underlying mechanism. METHODS: C57BL/6J mice were injected intraperitoneally with Arg for 1h or subjected to caloric restriction with Arg supplement in drinking water for 18days. HepG2 cells were exposed to different Arg concentrations for 24h. Signaling pathway agonists/inhibitors, siRNA, and overexpression plasmids were used to investigate the underlying molecular mechanism. Liver-specific toll-like receptor (TLR4) knockout mice were utilized to clarify the role of TLR4 in Arg-induced IGF-I expression and secretion. RESULTS: Arg inhibited the TLR4 downstream pathway by binding to TLR4 and consequently activated Janus kinase 2/signal transducer and activator of transcription 5 signaling pathway. As a result, IGF-1 transcription and secretion increased. Arg activity was absent in liver-specific TLR4 knockout mice and was greatly suppressed in liver with overexpressed TLR4, suggesting that hepatic TLR4 was required and sufficient to induce GH resistance. By contrast, the mammalian target of rapamycin pathway was unnecessary for Arg activity. Arg not only significantly increased IGF-1 expression and secretion under acute fasting and chronic CR conditions but also attenuated body weight loss. CONCLUSIONS: Our results demonstrate a previously unappreciated pathway involving Arg that reverses GH resistance and alleviates malnutrition-induced growth restriction through the inhibition of TLR4-mediated inflammatory pathway.


Assuntos
Arginina/farmacologia , Hormônio do Crescimento/metabolismo , Inflamação/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Animais , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Janus Quinase 2/biossíntese , Janus Quinase 2/genética , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT5/biossíntese , Fator de Transcrição STAT5/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética
12.
Pharmacol Res ; 121: 22-32, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28428116

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become a global health problem. However, there is no approved therapy for NAFLD. Farnesoid X receptor (FXR) is a potential drug target for treatment of NAFLD. In an attempt to screen FXR agonists, we found that cycloastragenol (CAG), a natural occurring compound in Astragali Radix, stimulated FXR transcription activity. In animal studies, we demonstrated that CAG treatment resulted in obvious reduction of high-fat diet induced lipid accumulation in liver accompanied by lowered blood glucose, serum triglyceride levels and hepatic bile acid pool size. The stimulation of FXR signalling by CAG treatment in DIO mice was confirmed via gene expression and western blot analysis. Molecular docking data further supported the interaction of CAG and FXR. In addition, CAG alleviated hepatic steatosis in methionine and choline deficient L-amino acid diet (MCD) induced non-alcoholic steatohepatitis (NASH) mice. Our data suggest that CAG ameliorates NAFLD via the enhancement of FXR signalling.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/agonistas , Sapogeninas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Células Hep G2 , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Sapogeninas/farmacologia
13.
Nature ; 538(7624): 253-256, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27698417

RESUMO

Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus, the major centre in the brain that regulates body weight homeostasis. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.


Assuntos
Regulação do Apetite/fisiologia , Prosencéfalo Basal/citologia , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/metabolismo , Comportamento Alimentar/fisiologia , Resposta de Saciedade/fisiologia , Acetilcolina/metabolismo , Animais , Peso Corporal/fisiologia , Morte Celular , Colina O-Acetiltransferase/deficiência , Agonistas Colinérgicos , Neurônios Colinérgicos/patologia , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Feminino , Homeostase , Hiperfagia/enzimologia , Hiperfagia/genética , Hiperfagia/patologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Modelos Neurológicos , Nicotina/metabolismo , Obesidade/enzimologia , Obesidade/genética , Obesidade/patologia , Receptores Colinérgicos/metabolismo
14.
Sci Rep ; 6: 19288, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26775807

RESUMO

Studies on peroxisome proliferator-activated receptor (PPAR)-γ ligands have been focused on agonists. However, PPARγ activation may induce obesity and nonalcoholic fatty liver disease (NAFLD), one of the most challenging medical conditions. Here, we identified that isorhamnetin, a naturally occurring compound in fruits and vegetables and the metabolite of quercetin, is a novel antagonist of PPARγ. Isorhamnetin treatment inhibited the adipocyte differentiation induced by the PPARγ agonist rosiglitazone, reduced obesity development and ameliorated hepatic steatosis induced by both high-fat diet treatment and leptin deficiency. Our results suggest that dietary supplement of isorhamnetin may be beneficial to prevent obesity and steatosis and PPARγ antagonists may be useful to treat hepatic steatosis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Leptina/deficiência , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , PPAR gama/antagonistas & inibidores , Quercetina/análogos & derivados , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Ligação Proteica , Quercetina/química , Quercetina/farmacologia , Ativação Transcricional
15.
J Neurosci ; 35(29): 10440-50, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203139

RESUMO

The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. Significance statement: Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.


Assuntos
Comportamento Alimentar/fisiologia , Neurônios GABAérgicos/fisiologia , Hiperfagia/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteína Relacionada com Agouti/biossíntese , Animais , Hipotálamo/citologia , Hipotálamo/fisiologia , Hibridização In Situ , Camundongos , Camundongos Mutantes , Neuropeptídeo Y/metabolismo , Técnicas de Cultura de Órgãos , Núcleo Hipotalâmico Paraventricular/citologia , Técnicas de Patch-Clamp , Pró-Opiomelanocortina/biossíntese
16.
Protein Cell ; 2(10): 800-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22058035

RESUMO

The current epidemic of obesity and its associated metabolic syndromes impose unprecedented challenges to our society. Despite intensive research on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of the leptin neural pathway in the hypothalamus in the regulation of body weight homeostasis. Important hypothalamic neuropeptides have been identified as critical neurotransmitters from leptin-sensitive neurons to mediate leptin action. Recent research advance has significantly expanded the list of neurotransmitters involved in body weight-regulating neural pathways, including fast-acting neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate. Given the limited knowledge on the leptin neural pathway for body weight homeostasis, understanding the function of neurotransmitters released from key neurons for energy balance regulation is essential for delineating leptin neural pathway and eventually for designing effective therapeutic drugs against the obesity epidemic.


Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Animais , Expressão Gênica , Humanos , Fome , Hipotálamo/fisiologia , Leptina/metabolismo , Leptina/fisiologia , Neuropeptídeos/genética , Obesidade/metabolismo
17.
Cell Metab ; 12(5): 545-52, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21035764

RESUMO

Blood glucose levels are tightly controlled, a process thought to be orchestrated primarily by peripheral mechanisms (insulin secretion by ß cells, and insulin action on muscle, fat, and liver). The brain also plays an important, albeit less well-defined role. Subsets of neurons in the brain are excited by glucose; in many cases this involves ATP-mediated closure of K(ATP) channels. To understand the relevance of this, we are manipulating glucose sensing within glucose-excited neurons. In the present study, we demonstrate that glucose excitation of MCH-expressing neurons in the lateral hypothalamus is mediated by K(ATP) channels and is negatively regulated by UCP2 (a mitochondrial protein that reduces ATP production), and that glucose sensing by MCH neurons plays an important role in regulating glucose homeostasis. Combined, the glucose-excited neurons are likely to play key, previously unexpected roles in regulating blood glucose.


Assuntos
Glucose/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/citologia , Canais Iônicos/metabolismo , Canais KATP/metabolismo , Melaninas/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Células Cultivadas , Expressão Gênica , Canais Iônicos/genética , Canais KATP/genética , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Mutação , Proteína Desacopladora 2
18.
Cell Metab ; 5(5): 383-93, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17488640

RESUMO

The importance of neuropeptides in the hypothalamus has been experimentally established. Due to difficulties in assessing function in vivo, the roles of the fast-acting neurotransmitters glutamate and GABA are largely unknown. Synaptic vesicular transporters (VGLUTs for glutamate and VGAT for GABA) are required for vesicular uptake and, consequently, synaptic release of neurotransmitters. Ventromedial hypothalamic (VMH) neurons are predominantly glutamatergic and express VGLUT2. To evaluate the role of glutamate release from VMH neurons, we generated mice lacking VGLUT2 selectively in SF1 neurons (a major subset of VMH neurons). These mice have hypoglycemia during fasting secondary to impaired fasting-induced increases in the glucose-raising pancreatic hormone glucagon and impaired induction in liver of mRNAs encoding PGC-1alpha and the gluconeogenic enzymes PEPCK and G6Pase. Similarly, these mice have defective counterregulatory responses to insulin-induced hypoglycemia and 2-deoxyglucose (an antimetabolite). Thus, glutamate release from VMH neurons is an important component of the neurocircuitry that functions to prevent hypoglycemia.


Assuntos
Ácido Glutâmico/metabolismo , Hipoglicemia/metabolismo , Hipotálamo/citologia , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Eletrofisiologia , Glucagon/metabolismo , Glucose-6-Fosfatase/metabolismo , Hibridização In Situ , Insulina , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/metabolismo , Fatores de Transcrição , Proteína Vesicular 2 de Transporte de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA