RESUMO
There is an urgent need to replace petroleum-based plastic with bio-based and biodegradable alternatives. Polyhydroxyalkanoates (PHAs) are attractive prospective replacements that exhibit desirable mechanical properties and are recyclable and biodegradable in terrestrial and marine environments. However, the production costs today still limit the economic sustainability of the PHA industry. Seaweed cultivation represents an opportunity for carbon capture, while also supplying a sustainable photosynthetic feedstock for PHA production. We mined existing gene and protein databases to identify bacteria able to grow and produce PHAs using seaweed-derived carbohydrates as substrates. There were no significant relationships between the genes involved in the deconstruction of algae polysaccharides and PHA production, with poor to negative correlations and diffused clustering suggesting evolutionary compartmentalism. We identified 2â987 bacterial candidates spanning 40 taxonomic families predominantly within Alphaproteobacteria, Gammaproteobacteria and Burkholderiales with enriched seaweed-degrading capacity that also harbour PHA synthesis potential. These included highly promising candidates with specialist and generalist specificities, including Alteromonas, Aquisphaera, Azotobacter, Bacillus, Caulobacter, Cellvibrionaceae, Duganella, Janthinobacterium, Massilia, Oxalobacteraceae, Parvularcula, Pirellulaceae, Pseudomonas, Rhizobacter, Rhodanobacter, Simiduia, Sphingobium, Sphingomonadaceae, Sphingomonas, Stieleria, Vibrio and Xanthomonas. In this enriched subset, the family-level densities of genes targeting green macroalgae polysaccharides were considerably higher (n=231.6±68.5) than enzymes targeting brown (n=65.34±13.12) and red (n=30.5±10.72) polysaccharides. Within these organisms, an abundance of FabG genes was observed, suggesting that the fatty acid de novo synthesis pathway supplies (R)-3-hydroxyacyl-CoA or 3-hydroxybutyryl-CoA from core metabolic processes and is the predominant mechanism of PHA production in these organisms. Our results facilitate extending seaweed biomass valorization in the context of consolidated biorefining for the production of bioplastics.
Assuntos
Petróleo , Poli-Hidroxialcanoatos , Alga Marinha , Bactérias/genética , Bactérias/metabolismo , Carboidratos , Carbono/metabolismo , Coenzima A/metabolismo , Ácidos Graxos/metabolismo , Humanos , Petróleo/metabolismo , Plásticos/metabolismo , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Estudos ProspectivosRESUMO
Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.
Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma de Planta/genética , Água do Mar , Zosteraceae/genética , Aclimatação/genética , Parede Celular/química , Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oceanos e Mares , Osmorregulação/genética , Filogenia , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Pólen/metabolismo , Salinidade , Tolerância ao Sal/genética , Alga Marinha/genética , Terpenos/metabolismoRESUMO
Pavlova lutheri, a marine microalga, is rich in the very long chain polyunsaturated fatty acids (VLCPUFAs) eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Using an expressed sequence tag approach, we isolated a cDNA designated Pldes1, and encoding an amino acid sequence showing high similarity with polyunsaturated fatty acid front-end desaturases. Heterologous expression in yeast demonstrated that PlDES1 desaturated 22:5n-3 and 22:4n-6 into 22:6n-3 and 22:5n-6 respectively, and was equally active on both substrates. Thus, PlDES1 is a novel VLCPUFA Delta4-desaturase. Pldes1 expression is four-fold higher during the mid-exponential phase of growth compared to late exponential and stationary phases.