Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(6): 1492-1507, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937368

RESUMO

Somatosensory information is propagated from the periphery to the cerebral cortex by two parallel pathways through the ventral posterolateral (VPL) and ventral posteromedial (VPM) thalamus. VPL and VPM neurons receive somatosensory signals from the body and head, respectively. VPL and VPM neurons may also receive cell type-specific GABAergic input from the reticular nucleus of the thalamus. Although VPL and VPM neurons have distinct connectivity and physiological roles, differences in their functional properties remain unclear as they are often studied as one ventrobasal thalamus neuron population. Here, we directly compared synaptic and intrinsic properties of VPL and VPM neurons in C57Bl/6J mice of both sexes aged P25-P32. VPL neurons showed greater depolarization-induced spike firing and spike frequency adaptation than VPM neurons. VPL and VPM neurons fired similar numbers of spikes during hyperpolarization rebound bursts, but VPM neurons exhibited shorter burst latency compared with VPL neurons, which correlated with larger sag potential. VPM neurons had larger membrane capacitance and more complex dendritic arbors. Recordings of spontaneous and evoked synaptic transmission suggested that VPL neurons receive stronger excitatory synaptic input, whereas inhibitory synapse strength was stronger in VPM neurons. This work indicates that VPL and VPM thalamocortical neurons have distinct intrinsic and synaptic properties. The observed functional differences could have important implications for their specific physiological and pathophysiological roles within the somatosensory thalamocortical network.NEW & NOTEWORTHY This study revealed that somatosensory thalamocortical neurons in the VPL and VPM have substantial differences in excitatory synaptic input and intrinsic firing properties. The distinct properties suggest that VPL and VPM neurons could process somatosensory information differently and have selective vulnerability to disease. This work improves our understanding of nucleus-specific neuron function in the thalamus and demonstrates the critical importance of studying these parallel somatosensory pathways separately.


Assuntos
Neurônios , Tálamo , Animais , Camundongos , Feminino , Masculino , Neurônios/fisiologia , Tálamo/fisiologia , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Córtex Cerebral , Córtex Somatossensorial/fisiologia
2.
Neurobiol Dis ; 167: 105672, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219855

RESUMO

Thalamocortical network dysfunction contributes to seizures and sleep deficits in Dravet syndrome (DS), an infantile epileptic encephalopathy, but the underlying molecular and cellular mechanisms remain elusive. DS is primarily caused by mutations in the SCN1A gene encoding the voltage-gated sodium channel NaV1.1, which is highly expressed in GABAergic reticular thalamus (nRT) neurons as well as glutamatergic thalamocortical neurons. We hypothesized that NaV1.1 haploinsufficiency alters somatosensory corticothalamic circuit function through both intrinsic and synaptic mechanisms in nRT and thalamocortical neurons. Using Scn1a heterozygous mice of both sexes aged P25-P30, we discovered reduced excitability of nRT neurons and thalamocortical neurons in the ventral posterolateral (VPL) thalamus, while thalamocortical ventral posteromedial (VPM) neurons exhibited enhanced excitability. NaV1.1 haploinsufficiency enhanced GABAergic synaptic input and reduced glutamatergic input to VPL neurons, but not VPM neurons. In addition, glutamatergic input to nRT neurons was reduced in Scn1a heterozygous mice. These findings introduce alterations in glutamatergic synapse function and aberrant glutamatergic neuron excitability in the thalamus as disease mechanisms in DS, which has been widely considered a disease of GABAergic neurons. This work reveals additional complexity that expands current models of thalamic dysfunction in DS and identifies new components of corticothalamic circuitry as potential therapeutic targets.


Assuntos
Epilepsias Mioclônicas , Neurônios GABAérgicos , Animais , Modelos Animais de Doenças , Epilepsias Mioclônicas/genética , Feminino , Neurônios GABAérgicos/fisiologia , Haploinsuficiência , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Tálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA