Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Front Immunol ; 14: 1247199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711618

RESUMO

The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.


Assuntos
Debaryomyces , Dourada , Animais , Dieta , Suplementos Nutricionais , Pele
2.
Animals (Basel) ; 13(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508043

RESUMO

Functional ingredients have profiled as suitable candidates for reinforcing the fish antioxidant response and stress tolerance. In addition, selective breeding strategies have also demonstrated a correlation between fish growth performance and susceptibility to stressful culture conditions as a key component in species domestication processes. The aim of the present study is to evaluate the ability of a selected high-growth genotype of 300 days post-hatch European sea bass (Dicentrarchus labrax) juveniles to use different functional additives as endogenous antioxidant capacity and stress resistance boosters when supplemented in low fish meal (FM) and fish oil (FO) diets. Three isoenergetic and isonitrogenous diets (10% FM/6% FO) were supplemented with 200 ppm of a blend of garlic and Labiatae plant oils (PHYTO0.02), 1000 ppm of a mixture of citrus flavonoids and Asteraceae and Labiatae plant essential oils (PHYTO0.1) or 5000 ppm of galactomannan-oligosaccharides (GMOS0.5). A reference diet was void of supplementation. The fish were fed the experimental diets for 72 days and subjected to a H2O2 exposure oxidative stress challenge. The fish stress response was evaluated through measuring the circulating plasma cortisol levels and the fish gill antioxidant response by the relative gene expression analysis of nfΚß2, il-1b, hif-1a, nd5, cyb, cox, sod, cat, gpx, tnf-1α and caspase 9. After the oxidative stress challenge, the genotype origin determined the capacity of the recovery of basal cortisol levels after an acute stress response, presenting GS fish with a better pattern of recovery. All functional diets induced a significant upregulation of cat gill gene expression levels compared to fish fed the control diet, regardless of the fish genotype. Altogether, suggesting an increased capacity of the growth selected European sea bass genotype to cope with the potential negative side-effects associated to an H2O2 bath exposure.

3.
Antioxidants (Basel) ; 12(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36670998

RESUMO

This study investigated the influence of dietary astaxanthin (AX) on glucose and lipid metabolism in rainbow trout liver. Two iso-nitrogenous and iso-lipidic diets were tested for 12 weeks in rainbow trout with an initial mean weight of 309 g. The S-ASTA diet was supplemented with 100 mg of synthetic AX per kg of feed, whereas the control diet (CTRL) had no AX. Fish fed the S-ASTA diet displayed lower neutral and higher polar lipids in the liver, associated with smaller hepatocytes and lower cytoplasm vacuolization. Dietary AX upregulated adipose triglyceride lipase (atgl), hormone-sensitive lipase (hsl2) and 1,2-diacylglycerol choline phosphotransferase (chpt), and downregulated diacylglycerol acyltransferase (dgat2), suggesting the AX's role in triacylglycerol (TAG) turnover and phospholipid (PL) synthesis. Dietary AX may also affect beta-oxidation with the upregulation of carnitine palmitoyltransferase 1 (cpt1α2). Although hepatic cholesterol levels were not affected, dietary AX increased gene expression of sterol regulatory element-binding protein 2 (srebp2). Dietary AX upregulated the expression of 6-phosphogluconate dehydrogenase (6pgdh) and downregulated pyruvate kinase (pkl). Overall, results suggest that dietary AX modulates the oxidative phase of the pentose phosphate pathway and the last step of glycolysis, affecting TAG turnover, ß-oxidation, PL and cholesterol synthesis in rainbow trout liver.

4.
Front Immunol ; 12: 663106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054829

RESUMO

An effective replacement for fish meal (FM) and fish oil (FO) based on plant-based raw materials in the feed of marine fish species is necessary for the sustainability of the aquaculture sector. However, the use of plant-based raw materials to replace FM and FO has been associated with several negative health effects, some of which are related to oxidative stress processes that can induce functional and morphological alterations in mucosal tissues. This study aimed to evaluate the effects of dietary oligosaccharides of plant origin (5,000 ppm; galactomannan oligosaccharides, GMOS) and a phytogenic feed additive (200 ppm; garlic oil and labiatae plant extract mixture, PHYTO) on the oxidative stress status and mucosal health of the gills of juvenile European sea bass (Dicentrarchus labrax). The experimental diets, low FM and FO diets (10%FM/6%FO) were supplemented with GMOS from plant origin and PHYTO for 63 days. GMOS and PHYTO did not significantly affect feed utilization, fish growth, and survival. GMOS and PHYTO downregulated the expression of ß-act, sod, gpx, cat, and gr in the gills of the fish compared with that in fish fed the control diet. The expression of hsp70 and ocln was upregulated and downregulated, respectively, in the GMOS group compared with that in the control group, whereas the expression of zo-1 was downregulated in the PHYTO group compared with that in the GMOS group. The morphological, histopathological, immunohistochemical, and biochemical parameters of the fish gills were mostly unaffected by GMOS and PHYTO. However, the PHYTO group had lower incidence of lamellar fusion than did the control group after 63 days. Although the tissular distribution of goblet cells was unaffected by GMOS and PHYTO, goblet cell size showed a decreasing trend (-11%) in the GMOS group. GMOS and PHYTO significantly reduced the concentration of PCNA+ in the epithelium of the gills. The above findings indicated that GMOS and PHYTO in low FM/FO-based diets protected the gill epithelia of D. labrax from oxidative stress by modulating the expression of oxidative enzyme-related genes and reducing the density of PCNA+ cells in the gills of the fish.


Assuntos
Ração Animal/análise , Bass , Suplementos Nutricionais , Óleos de Peixe , Mananas , Animais , Bass/anatomia & histologia , Bass/metabolismo , Biomarcadores , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Ingredientes de Alimentos/análise , Galactose/análogos & derivados , Brânquias/anatomia & histologia , Brânquias/crescimento & desenvolvimento , Brânquias/ultraestrutura , Imuno-Histoquímica/métodos , Mananas/administração & dosagem , Mananas/química , Estresse Oxidativo/efeitos dos fármacos
5.
Front Immunol ; 11: 1544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849522

RESUMO

Several amino acids (AA) are known to regulate key metabolic pathways that are crucial for immune responses. In particular, arginine (ARG) appears to have important roles regarding immune modulation since it is required for macrophage responses and lymphocyte development. Moreover, citrulline (CIT) is a precursor of arginine, and it was reported as an alternative to ARG for improving macrophage function in mammals. The present study aimed to explore the effects of dietary ARG and CIT supplementation on the gilthead seabream (Sparus aurata) immune status. Triplicate groups of fish (23.1 ± 0.4 g) were either fed a control diet (CTRL) with a balanced AA profile, or the CTRL diet supplemented with graded levels of ARG or CIT (i.e., 0.5 and 1% of feed; ARG1, CIT1, ARG2, and CIT2, respectively). After 2 and 4 weeks of feeding, fish were euthanized and blood was collected for blood smears, plasma for humoral immune parameters and shotgun proteomics, and head-kidney tissue for the measurement of health-related transcripts. A total of 94 proteins were identified in the plasma of all treatments. Among them, components of the complement system, apolipoproteins, as well as some glycoproteins were found to be highly abundant. After performing a PLS of the expressed proteins, differences between the two sampling points were observed. In this regard, component 1 (61%) was correlated with the effect of sampling time, whereas component 2 (18%) seemed associated to individual variability within diet. Gilthead seabream fed ARG2 and CIT2 at 4 weeks were more distant than fish fed all dietary treatments at 2 weeks and fish fed the CTRL diet at 4 weeks. Therefore, data suggest that the modulatory effects of AA supplementation at the proteome level were more effective after 4 weeks of feeding and at the higher inclusion level (i.e., 1% of feed). The bactericidal activity increased in fish fed the highest supplementation level of both AAs after 4 weeks. Peripheral monocyte numbers correlated positively with nitric oxide, which showed an increasing trend in a dose-dependent manner. The colony-stimulating factor 1 receptor tended to be up-regulated at the final sampling point regardless of dietary treatments. Data from this study point to an immunostimulatory effect of dietary ARG or CIT supplementation after 4 weeks of feeding in the gilthead seabream, particularly when supplemented at a 1% inclusion level.


Assuntos
Arginina/metabolismo , Citrulina/metabolismo , Suplementos Nutricionais , Dourada/imunologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores/sangue , Perfilação da Expressão Gênica , Imunidade Inata , Leucócitos/metabolismo , Proteoma , Proteômica/métodos , Dourada/sangue , Dourada/genética , Dourada/metabolismo
6.
PLoS One ; 15(4): e0231494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298317

RESUMO

There is an increasing interest from the aquafeed industry in functional feeds containing selected additives that improve fish growth performance and health status. Functional feed additives include probiotics, prebiotics, organic acids, and phytogenics (substances derived from plants and their extracts). This study evaluated the effects of dietary inclusion of a mucilage extract rich in galactomannan oligosaccharides (GMOS), a mixture of garlic and labiatae-plants oils (PHYTO), and a combination of them (GMOSPHYTO), on gut microbiota composition of European sea bass (Dicentrarchus labrax) fed with a low fishmeal (FM) and fish oil (FO) diet. Three experimental diets and a control diet (plant-based formulation with 10% FM and 6% FO) were tested in a 63-days feeding trial. To analyze the microbiota associated to feeds and the intestinal autochthonous (mucosa-adhered) and allochthonous (transient) microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME2 pipeline were used. Metabarcoding analysis of feed-associated bacteria showed that the microbial communities of control (CTRL) feed deeply differed from those of experimental diets. The number of reads was significantly lower in CTRL feed than in other feeds. The OTU (operational taxonomic unit) number was instead similar between the feeds, ranging from 42 to 50 OTUs. The variation of resident gut microbiota induced by diet was lower than the variation of transient intestinal microbiota, because feedstuffs are a major source of allochthonous bacteria, which can temporarily integrate into the gut transient microbiome. However, the composition of transient bacterial communities was not simply a mirror of feed-borne bacteria. Indeed, the microbial profile of feeds was different from both faecal and mucosa profiles. Our findings suggest that the dietary inclusion of GMOS (0.5%) and PHYTO (0.02%) in a low FM and FO diet induces changes in gut microbiota composition of European sea bass. However, if on allochthonous microbiota the combined inclusion of GMOS and PHYTO showed an antagonistic effect on bactericidal activity against Vibrionales, at mucosa level, only GMOSPHYTO diet increased the relative abundance of Bacteroidales, Lactobacillales, and Clostridiales resident bacterial orders. The main beneficial effects of GMOS and PHYTO on gut microbiota are the reduction of coliforms and Vibrionales bacteria, which include several potentially pathogenic species for fish, and the enrichment of gut microbiota composition with butyrate producer taxa. Therefore, these functional ingredients have a great potential to be used as health-promoting agents in the farming of European sea bass and other marine fish.


Assuntos
Bass/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Óleos de Peixe/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mananas/farmacologia , Extratos Vegetais/farmacologia , Compostos Alílicos/farmacologia , Ração Animal , Animais , Aquicultura/métodos , Bass/crescimento & desenvolvimento , Bass/microbiologia , Galactose/análogos & derivados , Microbioma Gastrointestinal/genética , Óleos de Plantas/farmacologia , RNA Ribossômico 16S/genética , Sulfetos/farmacologia
7.
PLoS One ; 14(9): e0222063, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31532807

RESUMO

European sea bass were fed four low FM/FO (10%/6%) diets containing galactomannan oligosaccharides (GMOS), a mixture of garlic oil and labiatae plants oils (PHYTO), or a combination of both functional products (GMOSPHYTO) for 63 days before exposing the fish to an intestinal Vibrio anguillarum infection combined with crowding stress. In order to evaluate functional diets efficacy in terms of gut health maintenance, structural, cellular, and immune intestinal status were evaluated by optical and electron microscopy and gene expression analyses. A semi-automated software was adapted to determine variations in goblet cell area and mucosal mucus coverage during the challenge test. Feeding with functional diets did not affect growth performance; however, PHYTO and GMOS dietary inclusion reduced European sea bass susceptibility to V. anguillarum after 7 days of challenge testing. Rectum (post-ileorectal valve) showed longer (p = 0.001) folds than posterior gut (pre-ileorectal valve), whereas posterior gut had thicker submucosa (p = 0.001) and higher mucus coverage as a result of an increased cell density than rectum. Functional diets did not affect mucosal fold length or the grade of granulocytes and lymphocytes infiltration in either intestinal segment. However, the posterior gut fold area covered by goblet cells was smaller in fish fed GMOS (F = 14.53; p = 0.001) and PHYTO (F = 5.52; p = 0.019) than for the other diets. PHYTO (F = 3.95; p = 0.049) reduced posterior gut goblet cell size and increased rodlet cell density (F = 3.604; p = 0.068). Dietary GMOS reduced submucosal thickness (F = 51.31; p = 0.001) and increased rodlet cell density (F = 3.604; p = 0.068) in rectum. Structural TEM analyses revealed a normal intestinal morphological pattern, but the use of GMOS increased rectum microvilli length, whereas the use of PHYTO increased (p≤0.10) Ocln, N-Cad and Cad-17 posterior gut gene expression. After bacterial intestinal inoculation, posterior gut of fish fed PHYTO responded in a more controlled and belated way in terms of goblet cell size and mucus coverage in comparison to other treatments. For rectum, the pattern of response was similar for all dietary treatments, however fish fed GMOS maintained goblet cell size along the challenge test.


Assuntos
Bass/crescimento & desenvolvimento , Doenças dos Peixes/prevenção & controle , Mananas/administração & dosagem , Oligossacarídeos/administração & dosagem , Vibrio/patogenicidade , Animais , Bass/genética , Bass/microbiologia , Tamanho Celular/efeitos dos fármacos , Suplementos Nutricionais , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Alimento Funcional , Galactose/análogos & derivados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mananas/farmacologia , Oligossacarídeos/farmacologia , Software
8.
Fish Shellfish Immunol ; 86: 35-45, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30339845

RESUMO

The main objective of this study was to determine the effect of two forms of mannan oligosaccharides (MOS: Bio-Mos® and cMOS: Actigen®, Alltech Inc, USA) and their combination on greater amberjack (Seriola dumerili) growth performance and feed efficiency, immune parameters and resistance against ectoparasite (Neobenedenia girellae) infection. Fish were fed for 90 days with 5 g kg-1 MOS, 2 g kg-1 cMOS or a combination of both prebiotics, in a Seriola commercial base diet (Skretting, Norway). At the end of the feeding period, no differences were found in growth performance or feed efficiency. Inclusion of MOS also had no effect on lysozyme activity in skin mucus and serum, but the supplementation of diets with cMOS induced a significant increase of serum bactericidal activity. Dietary cMOS also reduced significantly greater amberjack skin parasite levels, parasite total length and the number of parasites detected per unit of fish surface following a cohabitation challenge with N. girellae, whereas no effect of MOS was detected on these parameters. Of 17 immune genes studied cMOS dietary inclusion up-regulated hepcidin, defensin, Mx protein, interferon-γ (IFNγ), mucin-2 (MUC-2), interleukin-1ß (IL-1B), IL-10 and immunoglobulin-T (IgT) gene expression in gills and/or skin. MOS supplementation had a larger impact on spleen and head kidney gene expression, where piscidin, defensin, iNOS, Mx protein, interferons, IL-1ß, IL-10, IL-17 and IL-22 were all upregulated. In posterior gut dietary MOS and cMOS both induced IL-10, IgM and IgT, but with MOS also increasing piscidin, MUC-2, and IL-1ß whilst cMOS induced hepcidin, defensin and IFNγ. In general, the combination of MOS and cMOS resulted in fewer or lower increases in all tissues, possibly due to an overstimulation effect. The utilization of cMOS at the dose used here has clear benefits on parasite resistance in greater amberjack, linked to upregulation of a discrete set of immune genes in mucosal tissues.


Assuntos
Suplementos Nutricionais , Ectoparasitoses/veterinária , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Oligossacarídeos/farmacologia , Ração Animal , Animais , Dieta/veterinária , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Regulação da Expressão Gênica/efeitos dos fármacos , Prebióticos , Distribuição Aleatória , Trematódeos , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Regulação para Cima
9.
PeerJ ; 5: e3710, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093992

RESUMO

Substituting fishmeal (FM) with vegetable meal (VM) can markedly affect the mineral composition of feeds, and may require additional mineral supplementation. Their bioavailability and optimal supplementation levels depend also on the form of delivery of minerals. The aim of the study was to determine the effect of different delivery forms of three major trace elements (Zn, Mn and Se) in a marine teleost. Gilthead sea bream juveniles of 22.5 g were fed a VM-based diet for 12 weeks that was either not supplemented with these minerals or supplemented with inorganic, organic, or encapsulated inorganic forms of minerals in triplicate and compared to a FM-based diet. Our results showed that mineral delivery form significantly affected the biochemical composition and morphology of posterior vertebrae. Supplementation of VM-based diets with inorganic forms of the target minerals significantly promoted growth, increased the vertebral weight and content of ash and Zn, enhanced bone mineralization and affected the vertebral shape. Conversely, encapsulation of inorganic minerals reduced fish growth and vertebral mineral content, whereas supplementation of organic minerals, enhanced bone osteogenesis by upregulating bone morphogenetic protein 2 (bmp2) gene and produced vertebrae with a larger length in relation to height. Furthermore, organic mineral forms of delivery downregulated the expression of oxidative stress related genes, such as Cu/Zn superoxide dismutase (Cu/Zn sod) and glutathione peroxidase 1 (gpx-1), suggesting thus that dietary minerals supplemented in the organic form could be reasonably considered more effective than the inorganic and encapsulated forms of supply.

10.
Fish Shellfish Immunol ; 44(1): 100-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655325

RESUMO

The decreased availability of fish oil, traditionally used as oil source in marine aquafeeds, has lead to the search for alternatives oils. Vegetable oils (VO) are being extensively used as lipid sources in marine fish diets, inducing an imbalance on certain dietary fatty acids. Alteration on the dietary ratio of w-6/w-3 has been described to have detrimental effects on fish immunity. Senegalese sole has high susceptibility to stress and diseases, and little is known on the effects of dietary VO on its immunity. In this study, Senegalese sole juveniles were fed diets (56% crude protein, 12% crude lipid) containing linseed (100LO), soybean (100SO) or fish (100FO) oils as unique oil source. Growth, cortisol and intestinal fatty acid composition were determined after 90 days. Moreover, at the final of the experiment a stress test (5 min of net chasing) was carried out. To evaluate the effect of diets and stress on intestine immunology, expression profiles of a set of 53 immune-related genes using RT-qPCR was also performed. The use of VO did not induced changes in fish growth, but affected fatty acid profile of intestine and expression of immune-related genes. The use of SO (rich in n-6 fatty acids) induced an over-expression of those genes related to complement pathway, recognizing pathogen associated to molecular patterns, defensive response against bacteria, defensive response against viruses, antigen differentiation, cytokines and their receptors. This general over-expression could indicate an activation of inflammatory processes in fish gut. When a stress was applied, a decrease of mRNA levels of different immune-related genes with respect to the unstressed control could be observed in fish fed 100FO. However, fish fed 100LO, with a higher ALA/LA ratio, seemed to ameliorate the effects of combined effects of FO substitution plus stressful situation whereas fish fed 100SO did not show this type of response.


Assuntos
Óleo de Sementes de Algodão/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Proteínas de Peixes/genética , Linguados/genética , Linguados/imunologia , Óleo de Semente do Linho/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Especificidade de Órgãos , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Estresse Fisiológico
11.
Fish Shellfish Immunol ; 42(2): 508-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447638

RESUMO

The study assesses the effects of dietary concentrated mannan oligosaccharides (cMOS) on fish performance, biochemical composition, tissue fatty acid profiles, liver and posterior gut morphology and gen expression of selected parameters involved on the intestinal immune response and liver lipid metabolism of European sea bass (Dicentrarchus labrax). For that purpose, specimens of 20 g were fed during 8 weeks at 0 and 1.6 g kg(-1) dietary cMOS of inclusion in a commercial sea bass diet. Dietary cMOS enhanced fish length, specific and relative growth without affecting tissue proximate composition. However, cMOS supplementation altered especially liver and muscle fatty acid profiles by reducing levels of those fatty acids that are preferential substrates for ß-oxidation in spite of a preferential retention of long chain polyunsaturated fatty acids (LC-PUFA), such as 20:4n-6 or 22:5n-6, in relation to the down-regulation of delta 6/5 desaturase gene expression found in liver. Besides, dietary cMOS supplementation reduced posterior gut intestinal folds width and induced changes on the gene expression level of certain immune-related genes mainly by down regulating transforming growth factor ß (TGFß) and up-regulating immunoglobulin (Ig), major histocompatibility complex class II (MHCII), T cell receptor ß (TCRß) and Caspase 3 (Casp-3). Thus, dietary cMOS inclusion at 0.16% promoted European sea bass specific growth rate and length, stimulated selected cellular GALT-associated parameters and affected lipid metabolism in muscle and liver pointing to a higher LC-PUFA accumulation and promoted ß-oxidation.


Assuntos
Bass/fisiologia , Mananas/farmacologia , Oligossacarídeos/farmacologia , Ração Animal/análise , Animais , Bass/genética , Bass/crescimento & desenvolvimento , Bass/imunologia , Dieta/veterinária , Suplementos Nutricionais/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Distribuição Aleatória
12.
Fish Shellfish Immunol ; 34(6): 1485-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528875

RESUMO

The study assesses the effects of dietary mannan oligosaccharides (MOS) in European sea bass (Dicentrarchus labrax) posterior intestinal lipid class composition and its possible relation to the potential prostaglandins production and Gut Associated Lymphoid Tissue (GALT) stimulation. Fish were fed 4 g kg(-1) MOS (Bio-Mos(®) Aquagrade, Alltech, Inc., USA) for eight weeks. Fish fed MOS presented higher (P ≤ 0.05) weight gain, total length, and specific and relative growth rates than fish fed the control diet. Stimulated posterior gut of fish fed MOS showed higher (P ≤ 0.05) prostaglandins production than fish fed the control diet. Lipid class analyses of posterior gut revealed a reduction (P ≤ 0.05) in the neutral lipid fraction in fish fed MOS compared to fish fed the control diet, particularly due to a reduction (P ≤ 0.05) in triacylglycerols content. The polar lipid fraction increased (P ≤ 0.05) in fish fed MOS compared to fish fed the control diet, mainly due to an increase (P ≤ 0.05) in phosphatidylethanolamine and phosphatidylcoline contents. Light microscopy of posterior gut revealed increased number or goblet cells as well as higher level of infiltrated eosinophilic granulocytes for fish fed MOS. Transmission electron microscopy qualitative observations revealed a better preserved cytoarchitecture of the intestinal epithelial barrier in the posterior gut of fish fed MOS. Posterior gut of fish fed MOS presented more densely packed non-damaged enterocytes, better preserved tight junctions structure, healthier and more organized microvilli, and a higher presence of infiltrated lymphocytes and granulocytes compared fish fed the control diet. The present study indicates that dietary MOS enhances European sea bass posterior gut epithelial defense by increasing membrane polar lipids content in relation to a stimulation of the eicosanoid cascade and GALT, promoting posterior gut health status.


Assuntos
Bass/metabolismo , Carboidratos da Dieta/administração & dosagem , Intestinos/efeitos dos fármacos , Tecido Linfoide/metabolismo , Mananas/administração & dosagem , Prostaglandinas/metabolismo , Animais , Bass/anatomia & histologia , Cromatografia/veterinária , Suplementos Nutricionais/análise , Técnicas Imunoenzimáticas/veterinária , Mucosa Intestinal/metabolismo , Intestinos/ultraestrutura , Tecido Linfoide/citologia , Microscopia Eletrônica de Transmissão/veterinária , Oligossacarídeos/administração & dosagem
13.
Br J Nutr ; 107(2): 295-301, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21733311

RESUMO

There is limited information on the specific effects of long-chain PUFA (LCPUFA) on neuron development and functioning. Deficiency of those essential fatty acids impairs escape and avoidance behaviour in fish, where Mauthner cells (M-cells) play a particularly important role in initiating this response. Gilthead seabream larvae fed two different LCPUFA profiles were challenged with a sonorous stimulus. Feeding n-3 LCPUFA increased the content of these fatty acids in fish tissues and caused a higher number of larvae to react to the stimulus with a faster burst swimming speed response. This faster startle response in fish fed n-3 LCPUFA was also associated with an increased immune-positive neural response, particularly in M-cells, denoting a higher production of acetylcholine. The present study shows the first evidence of the effect of n-3 LCPUFA on the functioning of particular neurons in fish, the M-cells and the behaviour response that they modulate to escape from a sound stimulus.


Assuntos
Reação de Fuga , Ácidos Graxos Ômega-3/administração & dosagem , Metencéfalo/fisiologia , Neurônios/fisiologia , Dourada/fisiologia , Acetilcolina/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/fisiologia , Deficiências Nutricionais/patologia , Deficiências Nutricionais/fisiopatologia , Deficiências Nutricionais/prevenção & controle , Deficiências Nutricionais/veterinária , Ácidos Graxos Essenciais/administração & dosagem , Ácidos Graxos Essenciais/deficiência , Ácidos Graxos Essenciais/uso terapêutico , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Doenças dos Peixes/patologia , Doenças dos Peixes/fisiopatologia , Doenças dos Peixes/prevenção & controle , Óleos de Peixe/administração & dosagem , Óleos de Peixe/uso terapêutico , Proteínas de Peixes/metabolismo , Metencéfalo/citologia , Metencéfalo/crescimento & desenvolvimento , Metencéfalo/fisiopatologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/patologia , Distribuição Aleatória , Reflexo de Sobressalto , Dourada/crescimento & desenvolvimento , Óleo de Soja/administração & dosagem , Óleo de Soja/efeitos adversos
14.
Comp Biochem Physiol B Biochem Mol Biol ; 154(2): 179-87, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19539046

RESUMO

Increased energy content in fish feeds has led to an enhanced fat deposition, particularly in European sea bass, concerning fish farmers. Inclusion of conjugated linoleic acid (CLA) could reduce fat deposition as in other vertebrates. To determine if dietary CLA affects fat deposition, lipid metabolism, lipid composition and morphology of different tissues, growth and selected immune parameters, European sea bass juveniles were fed 4 graded levels of CLA (0, 0.5, 1 and 2%). Growth and feed conversion were not affected by CLA, whereas feed intake was reduced (P<0.05) by feeding 2% CLA. In these fish perivisceral fat was also reduced (P<0.05), particularly reducing (P<0.05) monounsaturated fatty acids. CLA has not affected tissue proximal composition, but reduced (P<0.05) saturated and monounsaturated fatty acids and increased (P<0.05) the n-3 and n-3 highly unsaturated fatty acids in muscle and increase (P<0.05) CLA content in muscle, liver and perivisceral fat. A progressive reduction in lipid vacuolization of hepatocytes cytoplasm and regular-shaped morphology was found in fish fed increased CLA levels, together with a progressive increase in malic enzyme activity (only significant in fish fed 1% CLA). Finally, inclusion of CLA up to 1% increased (P<0.05) plasma lysozyme activity and was positively correlated with alternative complement pathway.


Assuntos
Bass/imunologia , Bass/metabolismo , Gorduras na Dieta/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Animais , Bass/anatomia & histologia , Bass/crescimento & desenvolvimento , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Lipogênese/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Músculos/anatomia & histologia , Músculos/efeitos dos fármacos , Músculos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA