Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830084

RESUMO

The use of glucocorticoid medications is known to cause metabolic side effects such as overeating, excess weight gain, and insulin resistance. The hypothalamus, a central regulator of feeding behavior and energy expenditure, is highly responsive to glucocorticoids, and it has been proposed that it plays a role in glucocorticoid-induced metabolic defects. Glucocorticoids can alter the expression and activity of antioxidant enzymes and promote the accumulation of reactive oxygen species. Recent evidence indicates that selenium can counter the effects of glucocorticoids, and selenium is critical for proper hypothalamic function. This study sought to determine whether selenium is capable of protecting hypothalamic cells from dysfunction caused by glucocorticoid exposure. We treated mHypoE-44 mouse hypothalamic cells with corticosterone to study the effects on cellular physiology and the involvement of selenium. We found that corticosterone administration rendered cells more vulnerable to endoplasmic reticulum stress and the subsequent impairment of insulin signaling. Supplementing the cell culture media with additional selenium alleviated endoplasmic reticulum stress and promoted insulin signaling. These findings implicate a protective role of selenium against chronic glucocorticoid-induced hypothalamic dysfunction.

2.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499772

RESUMO

The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.


Assuntos
Selênio , Animais , Humanos , Homeostase/fisiologia , Hormônios , Selênio/metabolismo , Selenoproteínas/metabolismo
3.
Free Radic Biol Med ; 190: 55-61, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948259

RESUMO

Fifty years have passed since the discovery of the first selenoprotein by Rotruck and colleagues. In that time, the essential nature of selenium has come to light including the dependence of the brain on selenium to function properly. Animal models have shown that a lack of certain selenoproteins in the brain is detrimental for neuronal health, sometimes leading to neurodegeneration. There is also potential for selenoprotein-mediated redox balance to impact neuronal activity, including neurotransmission. Important insights on these topics have been gained over the past several years. This review briefly summarizes the known roles of specific selenoproteins in the brain while highlighting recent advancements regarding selenoproteins in neuronal function. Hypothetical models of selenoprotein function and emerging topics in the field are also provided.


Assuntos
Selênio , Animais , Glutationa Peroxidase , Neurônios , Selênio/fisiologia , Selenoproteína P , Selenoproteínas/genética
4.
Front Nutr ; 8: 682700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041261

RESUMO

The essential micronutrient selenium (Se) provides antioxidant defense and supports numerous biological functions. Obtained through dietary intake, Se is incorporated into selenoproteins via the amino acid, selenocysteine (Sec). Mice with genetic deletion of the Se carrier, selenoprotein P (SELENOP), and the Se recycling enzyme selenocysteine lyase (SCLY), suffer from sexually dimorphic neurological deficits and require Se supplementation for viability. These impairments are more pronounced in males and are exacerbated by dietary Se restriction. We report here that, by 10 weeks of age, female Selenop/Scly double knockout (DKO) mice supplemented with 1 mg/ml sodium selenite in drinking water develop signs of hyper-adiposity not seen in male DKO mice. Unexpectedly, this metabolic phenotype can be reversed by removing Se from the drinking water at post-natal day 22, just prior to puberty. Restricting access to Se at this age prevents excess body weight gain and restriction from either post-natal day 22 or 37 reduces gonadal fat deposits. These results provide new insight into the sex-dependent relationship between Se and metabolic homeostasis.

5.
Mol Cell Endocrinol ; 533: 111335, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052303

RESUMO

People with obesity are often dyslipidemic and prescribed statins to prevent cardiovascular events. A common side effect of statin use is myopathy. This could potentially be caused by the reduction of selenoproteins that curb oxidative stress, in turn, affecting creatine metabolism. We determined if statins regulate hepatic and muscular selenoprotein expression, oxidative stress and creatine metabolism. Mice lacking selenocysteine lyase (Scly KO), a selenium-provider enzyme for selenoprotein synthesis, were fed a high-fat, Se-supplemented diet and treated with simvastatin. Statin improved creatine metabolism in females and oxidative responses in both sexes. Male Scly KO mice were heavier than females after statin treatment. Hepatic selenoproteins were unaffected by statin and genotype in females. Statin upregulated muscular Gpx1 in females but not males, while Scly loss downregulated muscular Gpx1 in males and Selenon in females. Osgin1 was reduced in statin-treated Scly KO males after AmpliSeq analysis. These results refine our understanding of the sex-dependent role of selenium in statin responses.


Assuntos
Fígado/metabolismo , Liases/genética , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Selenoproteínas/metabolismo , Sinvastatina/administração & dosagem , Animais , Creatinina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Músculo Esquelético/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selênio , Caracteres Sexuais , Sinvastatina/farmacologia , Glutationa Peroxidase GPX1
6.
J Trace Elem Med Biol ; 62: 126596, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683228

RESUMO

BACKGROUND: The amino acid selenocysteine (Sec) is an integral part of selenoproteins, a class of proteins mostly involved in strong redox reactions. The enzyme Sec lyase (SCLY) decomposes Sec into selenide allowing for the recycling of the selenium (Se) atom via the selenoprotein synthesis machinery. We previously demonstrated that disruption of the Scly gene (Scly KO) in mice leads to the development of obesity and metabolic syndrome, with effects on glucose homeostasis, worsened by Se deficiency or a high-fat diet, and exacerbated in male mice. Our objective was to determine whether Se supplementation could ameliorate obesity and restore glucose homeostasis in the Scly KO mice. METHODS: Three-weeks old male and female Scly KO mice were fed in separate experiments a diet containing 45 % kcal fat and either sodium selenite or a mixture of sodium selenite and selenomethionine (selenite/SeMet) at moderate (0.25 ppm) or high (0.5-1 ppm) levels for 9 weeks, and assessed for metabolic parameters, oxidative stress and expression of selenoproteins. RESULTS: Se supplementation was unable to prevent obesity and elevated epididymal white adipose tissue weights in male Scly KO mice. Serum glutathione peroxidase activity in Scly KO mice was unchanged regardless of sex or dietary Se intake; however, supplementation with a mixture of selenite/SeMet improved oxidative stress biomarkers in the male Scly KO mice. CONCLUSION: These results unveil sex- and selenocompound-specific regulation of energy metabolism after the loss of Scly, pointing to a role of this enzyme in the control of whole-body energy metabolism regardless of Se levels.


Assuntos
Liases/metabolismo , Obesidade/metabolismo , Selênio/uso terapêutico , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Liases/genética , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Ácido Selenioso/uso terapêutico
8.
Nutrients ; 11(7)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340540

RESUMO

Selenium, an essential trace element known mainly for its antioxidant properties, is critical for proper brain function and regulation of energy metabolism. Whole-body knockout of the selenium recycling enzyme, selenocysteine lyase (Scly), increases susceptibility to metabolic syndrome and diet-induced obesity in mice. Scly knockout mice also have decreased selenoprotein expression levels in the hypothalamus, a key regulator of energy homeostasis. This study investigated the role of selenium in whole-body metabolism regulation using a mouse model with hypothalamic knockout of Scly. Agouti-related peptide (Agrp) promoter-driven Scly knockout resulted in reduced weight gain and adiposity while on a high-fat diet (HFD). Scly-Agrp knockout mice had reduced Agrp expression in the hypothalamus, as measured by Western blot and immunohistochemistry (IHC). IHC also revealed that while control mice developed HFD-induced leptin resistance in the arcuate nucleus, Scly-Agrp knockout mice maintained leptin sensitivity. Brown adipose tissue from Scly-Agrp knockout mice had reduced lipid deposition and increased expression of the thermogenic marker uncoupled protein-1. This study sheds light on the important role of selenium utilization in energy homeostasis, provides new information on the interplay between the central nervous system and whole-body metabolism, and may help identify key targets of interest for therapeutic treatment of metabolic disorders.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Dieta Hiperlipídica , Hipotálamo/enzimologia , Leptina/metabolismo , Liases/deficiência , Neurônios/metabolismo , Obesidade/prevenção & controle , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Marrom/fisiopatologia , Adiposidade , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Hipotálamo/fisiopatologia , Liases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/fisiopatologia , Transdução de Sinais , Proteína Desacopladora 1/metabolismo , Aumento de Peso
9.
Antioxidants (Basel) ; 8(4)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022880

RESUMO

Selenium is an essential trace element linked to normal development and antioxidant defense mechanisms through its incorporation into selenoproteins via the amino acid, selenocysteine (Sec). Male mice lacking both the Se transporter, selenoprotein P (SELENOP), and selenocysteine lyase (Scly), which plays a role in intracellular Se utilization, require Se supplementation for viability and exhibit neuromotor deficits. Previously, we demonstrated that male SELENOP/Scly double knockout (DKO) mice suffer from loss of motor function and audiogenic seizures due to neurodegeneration, both of which are alleviated by prepubescent castration. The current study examined the neuromotor function of female DKO mice using the rotarod and open field test, as well as the effects of dietary Se restriction. Female DKO mice exhibited a milder form of neurological impairment than their male counterparts. This impairment is exacerbated by removal of Se supplementation during puberty. These results indicate there is a critical time frame in which Se supplementation is essential for neurodevelopment. These sex-specific differences may unveil new insights into dietary requirements for this essential nutrient in humans.

10.
Free Radic Biol Med ; 127: 172-181, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518483

RESUMO

The hypothalamus is the central neural site governing food intake and energy expenditure. During the past 25 years, understanding of the hypothalamic cell types, hormones, and circuitry involved in the regulation of energy metabolism has dramatically increased. It is now well established that the adipocyte-derived hormone, leptin, acts upon two distinct groups of hypothalamic neurons that comprise opposing arms of the central melanocortin system. These two cell populations are anorexigenic neurons expressing proopiomelanocortin (POMC) and orexigenic neurons that express agouti-related peptide (AGRP). Several important studies have demonstrated that reactive oxygen species and endoplasmic reticulum stress significantly impact these hypothalamic neuronal populations that regulate global energy metabolism. Reactive oxygen species and redox homeostasis are influenced by selenoproteins, an essential class of proteins that incorporate selenium co-translationally in the form of the 21st amino acid, selenocysteine. Levels of these proteins are regulated by dietary selenium intake and they are widely expressed in the brain. Of additional relevance, selenium supplementation has been linked to metabolic alterations in both animal and human studies. Recent evidence also indicates that hypothalamic selenoproteins are significant modulators of energy metabolism in both neurons and tanycytes, a population of glial-like cells lining the floor of the 3rd ventricle within the hypothalamus. This review article will summarize current understanding of the regulatory influence of redox status on hypothalamic nutrient sensing and highlight recent work revealing the importance of selenoproteins in the hypothalamus.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Selenoproteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Homeostase/fisiologia , Humanos , Oxirredução
11.
J Neurosci ; 35(46): 15326-38, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26586820

RESUMO

Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1(-/-) and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. SIGNIFICANCE STATEMENT: Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy.


Assuntos
Encéfalo/metabolismo , Liases/metabolismo , Transtornos do Neurodesenvolvimento/genética , Selênio/metabolismo , Selenoproteína P/metabolismo , Fatores Etários , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Castração , Maleato de Dizocilpina/farmacologia , Epilepsia Reflexa/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Liases/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/prevenção & controle , Selenoproteína P/genética , Fatores Sexuais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA