Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
FASEB J ; 37(9): e23120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527279

RESUMO

The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.


Assuntos
Fator de Necrose Tumoral alfa , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácidos Graxos , Regulação para Baixo , Hipotálamo/metabolismo
2.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598900

RESUMO

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Assuntos
Intolerância à Glucose , Obesidade Materna , Humanos , Feminino , Animais , Camundongos , Gravidez , Barreira Hematoencefálica/metabolismo , Eminência Mediana/metabolismo , Obesidade Materna/metabolismo , Mães , Intolerância à Glucose/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna
3.
Clin Sci (Lond) ; 133(22): 2345-2360, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31722009

RESUMO

There is no consensus on the effects of omega-3 (ω-3) fatty acids (FA) on cutaneous repair. To solve this problem, we used 2 different approaches: (1) FAT-1 transgenic mice, capable of producing endogenous ω-3 FA; (2) wild-type (WT) mice orally supplemented with DHA-enriched fish oil. FAT-1 mice had higher systemic (serum) and local (skin tissue) ω-3 FA levels, mainly docosahexaenoic acid (DHA), in comparison with WT mice. FAT-1 mice had increased myeloperoxidase (MPO) activity and content of CXCL-1 and CXCL-2, and reduced IL-10 in the skin wound tissue three days after the wound induction. Inflammation was maintained by an elevated TNF-α concentration and presence of inflammatory cells and edema. Neutrophils and macrophages, isolated from FAT-1 mice, also produced increased TNF-α and reduced IL-10 levels. In these mice, the wound closure was delayed, with a wound area 6-fold bigger in relation with WT group, on the last day of analysis (14 days post-wounding). This was associated with poor orientation of collagen fibers and structural aspects in repaired tissue. Similarly, DHA group had a delay during late inflammatory phase. This group had increased TNF-α content and CD45+F4/80+ cells at the third day after skin wounding and increased concentrations of important metabolites derived from ω-3, like 18-HEPE, and reduced concentrations of those from ω-6 FA. In conclusion, elevated DHA content, achieved in both FAT-1 and DHA groups, slowed inflammation resolution and impaired the quality of healed skin tissue.


Assuntos
Ácidos Docosa-Hexaenoicos/fisiologia , Cicatrização , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Suplementos Nutricionais , Ácidos Graxos Dessaturases/genética , Inflamação , Macrófagos/fisiologia , Masculino , Camundongos Transgênicos , Neutrófilos/fisiologia , Pele/metabolismo
4.
Endocrinology ; 157(12): 4803-4816, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27732087

RESUMO

A temporary and reversible inhibition of the hypothalamo-pituitary-gonadal axis is adaptive when energy reserves are diminished, allowing individual survival and energy accumulation for eventual reproduction. The AMP-activated protein kinase (AMPK) works as a cellular sensor of the AMP to ATP ratio and ultimately of energy availability. Activation of AMPK suppresses ATP-consuming processes and stimulates ATP-producing pathways. The AMPK α2 catalytic subunit is expressed in multiple hypothalamic nuclei including those associated with reproductive control, ie, the anteroventral periventricular nucleus and the arcuate nucleus. Subsets of kisspeptin neurons in the anteroventral periventricular nucleus (20% in females) and arcuate nucleus (45% in males and 65% in females) coexpress AMPKα2 mRNA. Using the Cre-loxP approach, we assessed whether AMPKα2 in Kiss1 cells is required for body weight and reproductive function. The AMPKα2-deleted mice show no difference in body weight and time for sexual maturation compared with controls. Males and females are fertile and have normal litter size. The AMPKα2-deleted and control females have similar estradiol feedback responses and show no difference in Kiss1 mRNA expression after ovariectomy or ovariectomy plus estradiol replacement. In males, acute fasting decreased Kiss1 mRNA expression in both groups, but no effect was observed in females. However, after an acute fasting, control mice displayed prolonged diestrous phase, but AMPKα2-deleted females showed no disruption of estrous cycles. Our findings demonstrate that the AMPKα2 catalytic subunit in Kiss1 cells is dispensable for body weight and reproductive function in mice but is necessary for the reproductive adaptations to conditions of acute metabolic distress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Jejum/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Maturidade Sexual/fisiologia , Animais , Peso Corporal/fisiologia , Ciclo Estral/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout
5.
J Nutr Biochem ; 34: 30-41, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180121

RESUMO

Nutritional excess during pregnancy and lactation has a negative impact on offspring phenotype. In adulthood, obesity and lipid overload represent factors that compromise autophagy, a process of lysosomal degradation. Despite knowledge of the impact of obesity on autophagy, changes in offspring of obese dams have yet to be investigated. In this study, we tested the hypothesis that maternal obesity induced by a high fat diet (HFD) modulates autophagy proteins in the hypothalamus and liver of the offspring of mice. At birth (d0), offspring of obese dams (HFD-O) showed an increase in p62 protein and a decrease in LC3-II, but only in the liver. After weaning (d18), the offspring of HFD-O animals showed impairment of autophagy markers in both tissues compared to control offspring (SC-O). Between day 18 and day 42, both groups received a control diet and we observed that the protein content of p62 remained increased in the livers of the HFD-O offspring. However, after 82days, we did not find any modulation in offspring autophagy proteins. On the other hand, when the offspring of obese dams that received an HFD from day 42 until day 82 (OH-H) were compared with the offspring from the controls that only received an HFD in adulthood (OC-H), we saw impairment in autophagy proteins in both tissues. In conclusion, this study describes that HFD-O offspring showed early impairment of autophagy proteins. Although the molecular mechanisms have not been explored, it is possible that changes in autophagy markers could be associated with metabolic disturbances of offspring.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Lactação , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Animais Recém-Nascidos , Dieta Hiperlipídica/efeitos adversos , Feminino , Desenvolvimento Fetal , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/fisiopatologia , Especificidade de Órgãos , Obesidade Infantil/etiologia , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Gravidez , Complicações na Gravidez/etiologia , Complicações na Gravidez/fisiopatologia , Distribuição Aleatória , Proteína Sequestossoma-1/genética , Desmame
6.
PLoS One ; 10(3): e0119850, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786112

RESUMO

Autophagy is an important process that regulates cellular homeostasis by degrading dysfunctional proteins, organelles and lipids. In this study, the hypothesis that obesity could lead to impairment in hypothalamic autophagy in mice was evaluated by examining the hypothalamic distribution and content of autophagic proteins in animal with obesity induced by 8 or 16 weeks high fat diet to induce obesity and in response to intracerebroventricular injections of palmitic acid. The results showed that chronic exposure to a high fat diet leads to an increased expression of inflammatory markers and downregulation of autophagic proteins. In obese mice, autophagic induction leads to the downregulation of proteins, such as JNK and Bax, which are involved in the stress pathways. In neuron cell-line, palmitate has a direct effect on autophagy even without inflammatory activity. Understanding the cellular and molecular bases of overnutrition is essential for identifying new diagnostic and therapeutic targets for obesity.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Autofagia/fisiologia , Ácidos Graxos/metabolismo , Hipotálamo/fisiologia , Obesidade/fisiopatologia , Análise de Variância , Animais , Linhagem Celular , Imunofluorescência , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Immunoblotting , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Obesos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína X Associada a bcl-2/metabolismo
7.
PLoS One ; 8(4): e62669, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626844

RESUMO

BACKGROUND: Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability. METHODOLOGY/PRINCIPAL FINDINGS: In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation. CONCLUSION/SIGNIFICANCE: Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/genética , Hipotálamo/metabolismo , Fígado/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Peso Corporal , Dieta , Regulação da Expressão Gênica , Gluconeogênese/fisiologia , Hormônios/sangue , Masculino , Oligonucleotídeos/administração & dosagem , Fosforilação , Ratos
8.
Diabetes ; 61(6): 1455-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22522614

RESUMO

Defective liver gluconeogenesis is the main mechanism leading to fasting hyperglycemia in type 2 diabetes, and, in concert with steatosis, it is the hallmark of hepatic insulin resistance. Experimental obesity results, at least in part, from hypothalamic inflammation, which leads to leptin resistance and defective regulation of energy homeostasis. Pharmacological or genetic disruption of hypothalamic inflammation restores leptin sensitivity and reduces adiposity. Here, we evaluate the effect of a hypothalamic anti-inflammatory approach to regulating hepatic responsiveness to insulin. Obese rodents were treated by intracerebroventricular injections, with immunoneutralizing antibodies against Toll-like receptor (TLR)4 or tumor necrosis factor (TNF)α, and insulin signal transduction, hepatic steatosis, and gluconeogenesis were evaluated. The inhibition of either TLR4 or TNFα reduced hypothalamic inflammation, which was accompanied by the reduction of hypothalamic resistance to leptin and improved insulin signal transduction in the liver. This was accompanied by reduced liver steatosis and reduced hepatic expression of markers of steatosis. Furthermore, the inhibition of hypothalamic inflammation restored defective liver glucose production. All these beneficial effects were abrogated by vagotomy. Thus, the inhibition of hypothalamic inflammation in obesity results in improved hepatic insulin signal transduction, leading to reduced steatosis and reduced gluconeogenesis. All these effects are mediated by parasympathetic signals delivered by the vagus nerve.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Hipotálamo/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/fisiologia , Homeostase/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Insulina/metabolismo , Leptina/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
9.
Exp Biol Med (Maywood) ; 236(10): 1147-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844120

RESUMO

Hydroalcoholic extract of Solidago chilensis (Sc) is employed in popular medicine to treat inflammatory disease. The low-grade proinflammatory state and the activation of serine/threonine kinases in adipose tissue, like c-jun kinase (JNK) and IKK, and transcription factors, have an important role in obesity-associated insulin resistance. The aim of this study was to further investigate the effects of the Sc extract on glucose homeostasis in diet-induced obesity mice. Male Swiss mice were randomized to three groups: a control group (C) fed with standard laboratory chow; a group with an experimental high-fat diet (HFD); and a group fed with a high-fat (45% kcal from fat) diet + extract of Sc (via intraperitoneal, 3 mg/kg) (ScHFD). The dietary treatment lasted for eight weeks. Subsequently, the expression and phosphorylation of proteins of interest in the liver, hypothalamus and skeletal muscle were evaluated by Western blot analysis. Body weight, epididymal fat pad mass and liver triglycerides were higher in HFD than in control mice, but these parameters were reduced by intraperitoneal administration of the extracts (3 mg/kg) to the HFD group. AKT phosphorylation stimulated by insulin in the liver, hypothalamus and skeletal muscle was higher in ScHFD as compared with HFD mice. Additionally, liver expression of phosphoenolpyruvate carboxykinase (PEPCK) and fatty acid synthase were lower in ScHFD as compared with HFD mice. Nuclear factor κB, p-IκB and p-JNK levels were higher in HFD when compared with control mice, but they were lowered by treatment with extract (ScHFD). In addition, in db/db mice, Sc extract also improved liver AKT phosphorylation stimulated by insulin and reduced PEPCK expression. The data presented herein show that Sc improves AKT activation. This effect may be promoted by reduction of the proinflammatory pathway in the liver and hypothalamus. Therefore, systemic action of the Sc components may contribute to improve obesity-associated pathophysiology.


Assuntos
Proteínas I-kappa B/metabolismo , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Obesidade/metabolismo , Extratos Vegetais/uso terapêutico , Solidago , Animais , Glucose/análise , Teste de Tolerância a Glucose , Proteínas I-kappa B/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Fígado/química , Fígado/metabolismo , Glicogênio Hepático/análise , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/análise
10.
Vitam Horm ; 82: 129-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20472136

RESUMO

Obesity is one of the most prevalent diseases in the modern world. It results from the progressive loss of balance between food intake and whole body energy expenditure. Recent studies have shown that consumption of fat-rich diets induces hypothalamic inflammation and dysfunction which is characterized by defective response to anorexygenic and thermogenic hormones, such as leptin and insulin, leading to anomalous neurotransmitter production and favoring body mass gain. In this chapter, we present the main recent advances in this rapidly evolving field, focusing on the role of hypothalamic inflammation on the genesis of obesity.


Assuntos
Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Ingestão de Energia , Metabolismo Energético , Comportamento Alimentar , Humanos , Inflamação/complicações , Obesidade/complicações
11.
Mol Cell Endocrinol ; 314(1): 62-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19698760

RESUMO

Central leptin action requires PI3K activity to modulate glucose homeostasis and peripheral metabolism. However, the mechanism behind this phenomenon is not clearly understood. We hypothesize that hypothalamic PI3K activity is important for the modulation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway, PGC1 alpha, and AKT in skeletal muscle (SM). To address this issue, we injected leptin into the lateral ventricle of rats. Hypothalamic JAK2 and AKT were activated by intracerebroventricular (ICV) injection of leptin in a time-dependent manner. Central leptin improved tolerance to glucose (GTT), increased PGC1 alpha expression, and AKT, AMPK, ACC and JAK2 phosphorylation in the soleus muscle. Previous ICV administration of either LY294002 or propranolol (IP) blocked these effects. We concluded that the activation of the hypothalamic PI3K pathway is important for leptin-induced AKT phosphorylation, as well as for active catabolic pathway through AMPK and PGC1 alpha in SM. Thus, a defective leptin signalling PI3K pathway in the hypothalamus may contribute to peripheral resistance to insulin associated to diet-induced obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipotálamo , Leptina/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Antagonistas Adrenérgicos beta/metabolismo , Animais , Cromonas/metabolismo , Metabolismo Energético , Glucose/metabolismo , Homeostase , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Insulina/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leptina/farmacologia , Masculino , Morfolinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Propranolol/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Ligação a RNA/genética , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
12.
Rev Neurosci ; 20(5-6): 441-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20397624

RESUMO

The prevalence of obesity has grown to an alarming magnitude, affecting more than 300 million humans worldwide. Although in most instances obesity is caused by excessive caloric consumption, only recently have we begun to understand the mechanisms involved in the loss of balance between caloric intake and energy expenditure. In the hypothalamus, groups of specialized neurons provide the signals that, under physiological conditions, determine the stability of body mass. Recent studies have shown that under certain environmental and genetic conditions, this equilibrium is lost and body adiposity may increase. Here, we review the work that provided the basis for the current understanding of hypothalamic dysfunction and the genesis of obesity.


Assuntos
Hipotálamo/fisiopatologia , Obesidade/patologia , Animais , Humanos , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo
13.
Life Sci ; 82(25-26): 1262-71, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18534630

RESUMO

The hypothalamic AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) pathway is known to play an important role in the control of food intake and energy expenditure. Here, we hypothesize that citrate, an intermediate metabolite, activates hypothalamic ACC and is involved in the control of energy mobilization. Initially, we showed that ICV citrate injection decreased food intake and diminished weight gain significantly when compared to control and pair-fed group results. In addition, we showed that intracerebroventricular (ICV) injection of citrate diminished (80% of control) the phosphorylation of ACC, an important AMPK substrate. Furthermore, citrate treatment inhibited (75% of control) hypothalamic AMPK phosphorylation during fasting. In addition to its central effect, ICV citrate injection led to low blood glucose levels during glucose tolerance test (GTT) and high glucose uptake during hyperglycemic-euglycemic clamp. Accordingly, liver glycogen content was higher in animals given citrate (ICV) than in the control group (23.3+/-2.5 vs. 2.7+/-0.5 microg mL(-1) mg(-1), respectively). Interestingly, liver AMPK phosphorylation was reduced (80%) by the citrate treatment. The pharmacological blockade of beta3-adrenergic receptor (SR 59230A) blocked the effect of ICV citrate and citrate plus insulin on liver AMPK phosphorylation. Consistently with these results, rats treated with citrate (ICV) presented improved insulin signal transduction in liver, skeletal muscle, and epididymal fat pad. Similar results were obtained by hypothalamic administration of ARA-A, a competitive inhibitor of AMPK. Our results suggest that the citrate produced by mitochondria may modulate ACC phosphorylation in the hypothalamus, controlling food intake and coordinating a multiorgan network that controls glucose homeostasis and energy uptake through the adrenergic system.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Ácido Cítrico/farmacologia , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Hipotálamo/enzimologia , Fígado/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP , Animais , Peso Corporal/efeitos dos fármacos , Ácido Cítrico/administração & dosagem , Corticosterona/sangue , Comportamento Alimentar/efeitos dos fármacos , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Insulina/sangue , Fígado/enzimologia , Masculino , Complexos Multienzimáticos/metabolismo , Fosforilação/efeitos dos fármacos , Propanolaminas , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
14.
J Endocrinol ; 198(1): 157-68, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469022

RESUMO

We hypothesized that citrate might modulate the AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK)/(ACC) pathway and participate in neuronal feeding control and glucose homeostasis. To address this issue, we injected citrate into the lateral ventricle of rats. Intracerebroventricular (ICV) injection of citrate diminished the phosphorylation of hypothalamic AMPK/ACC, increased the expression of anorexigenic neuropeptide (pro-opiomelanocortin and corticotropin-releasing hormone), elevated the level of malonyl-CoA in the hypothalamus, and reduced food intake. No change was observed in the concentration of blood insulin after the injection of citrate. With a euglycemic-hyperinsulinemic clamp, the glucose infusion rate was higher in the citrate group than in the control group (28.6+/-0.8 vs 19.3+/-0.2 mU/kg body weight/min respectively), and so was glucose uptake in skeletal muscle and the epididymal fat pad. Concordantly, insulin receptor (IR), IR substrate type 1 (IRS1), IRS2, and protein kinase B (AKT) phosphorylation in adipose tissue and skeletal muscle was improved by citrate ICV treatment. Moreover, the treatment with citrate for 7 days promoted body weight loss and decreased the adipose tissue. Our results suggest that citrate and glucose may serve as signals of energy and nutrient availability to hypothalamic cells.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Ácido Cítrico/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/enzimologia , Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Acetil-CoA Carboxilase/fisiologia , Animais , Ácido Cítrico/administração & dosagem , Injeções Intraventriculares , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
15.
Peptides ; 28(5): 1050-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17459524

RESUMO

Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-alpha promotes a reduction of 25% in 12h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-alpha increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NFkappaB, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-alpha activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-alpha, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus.


Assuntos
Respiração Celular/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Insulina/metabolismo , Leptina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Hipotálamo/metabolismo , Immunoblotting , Imunoprecipitação , Insulina/administração & dosagem , Insulina/farmacologia , Janus Quinase 2/metabolismo , Leptina/administração & dosagem , Leptina/farmacologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/administração & dosagem
16.
J Physiol ; 568(Pt 3): 993-1001, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16141267

RESUMO

The exposure of homeothermic animals to a cold environment leads to a powerful activation of orexigenic signalling which is accompanied by molecular and functional resistance to insulin-induced inhibition of feeding. Recent evidence suggests that AMPK participates in nutrient-dependent control of satiety and adiposity. The objective of the present study was to evaluate the effect of cold exposure upon the molecular activation of AMPK signalling in the hypothalamus of rats. Immunoblotting demonstrated that cold exposure per se is sufficient for inducing, on a time-dependent basis, the molecular activation of the serine/threonine kinase AMP-activated protein kinase (AMPK) and inactivation of the acetyl-CoA carboxylase (ACC). These molecular phenomena were accompanied by resistance to nutrient-induced inactivation of AMPK and activation of ACC. Moreover, cold-exposure led to a partial inhibition of a feeding-induced anorexigenic response, which was paralleled by resistance to insulin-induced suppression of feeding. Finally, cold exposure significantly impaired insulin-induced inhibition of AMPK through a mechanism dependent on the molecular cross-talk between phosphatidylinositol-3(PI3)-kinase/Akt and AMPK. In conclusion, increased feeding during cold exposure results, at least in part, from resistance to insulin- and nutrient-dependent anorexigenic signalling in the hypothalamus.


Assuntos
Anorexia/fisiopatologia , Temperatura Baixa , Comportamento Alimentar/fisiologia , Hipotálamo/fisiopatologia , Imunidade Inata , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP , Adaptação Fisiológica , Animais , Ativação Enzimática , Resistência à Insulina , Masculino , Fenômenos Fisiológicos da Nutrição , Ratos , Ratos Wistar
17.
Obes Res ; 13(1): 48-57, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15761162

RESUMO

OBJECTIVE: To investigate whether insulin and leptin share common intracellular signal transduction pathways and to determine whether these hormonal signaling systems modulate each other's action in rat hypothalamus. RESEARCH METHODS AND PROCEDURES: Male Wistar rats were studied after chronic implantation of an intracerebroventricular catheter into the third ventricle. Immunoprecipitation and immunoblotting were used to examine the activation of insulin and leptin signaling molecules in the rat hypothalamus. RESULTS: Insulin alone is able to produce molecular activation of insulin receptor substrates (IRSs)/phosphatidylinositol 3-kinase (PI 3-kinase)/Akt and mitogen-activated protein (MAP) kinase signaling pathways in hypothalamus, whereas leptin alone activates MAP kinase and IRSs/PI 3-kinase signaling with no effect on Akt. Combined infusion of leptin and insulin provokes a dual action. There was no quantitative potentialization of any single hormone's action on the elements of the insulin signaling pathway, IRSs/PI 3-kinase/Akt, and MAP kinase. Conversely, leptin plus insulin leads to quantitative potentialization of molecular signaling through the Janus kinase/signal transducer and activator of transcription pathway. DISCUSSION: We provide evidence for a convergence of leptin and insulin signaling at the level of IRSs-PI 3-kinase and a divergence at the level of Akt. Moreover, our results indicate a direct and positive cross-talk between insulin and leptin at the level of Janus kinase 2 and signal transducer and activator of transcription 3 tyrosine phosphorylation. This mechanism may serve to potentiate the activity of both insulin and leptin pathways and to increase stimulation in physiological processes such as the control of food intake and body weight, which are under the combined control of insulin and leptin.


Assuntos
Hipotálamo/fisiologia , Insulina/fisiologia , Leptina/fisiologia , Animais , Western Blotting , Proteínas de Ligação a DNA/fisiologia , Ingestão de Alimentos/fisiologia , Injeções Intraventriculares , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfoproteínas/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Fator de Transcrição STAT3 , Transdução de Sinais/fisiologia , Transativadores/fisiologia
18.
J Endocrinol ; 181(1): 117-28, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15072572

RESUMO

Angiotensin II exerts a potent dypsogenic stimulus on the hypothalamus, which contributes to its centrally mediated participation in the control of water balance and blood pressure. Repetitive intracerebroventricular (i.c.v.) injections of angiotensin II lead to a loss of effect characterized as physiological desensitization to the peptide's action. In the present study, we demonstrate that angiotensin II induces the expression of suppressor of cytokine signaling (SOCS)-3 via angiotensin receptor 1 (AT1) and JAK-2, mostly located at the median preoptic lateral and anterodorsal preoptic nuclei. SOCS-3 produces an inhibitory effect upon the signal transduction pathways of several cytokines and hormones that employ members of the JAK/STAT families as intermediaries. The partial inhibition of SOCS-3 translation by antisense oligonucleotide was sufficient to significantly reduce the refractoriness of repetitive i.c.v. angiotensin II injections, as evaluated by water ingestion. Thus, by acting through AT1 on the hypothalamus, angiotensin II induces the expression of SOCS-3 which, in turn, blocks further activation of the pathway and consequently leads to desensitization to angiotensin II stimuli concerning its dypsogenic effect.


Assuntos
Angiotensina II/farmacologia , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Hipotálamo/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Depressão Química , Hipotálamo/química , Hipotálamo/efeitos dos fármacos , Imuno-Histoquímica , Injeções Intraventriculares , Janus Quinase 2 , Masculino , Oligonucleotídeos Antissenso/farmacologia , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/metabolismo , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Fatores de Transcrição/genética
19.
Endocrinology ; 144(11): 4831-40, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12960043

RESUMO

Short-term cold exposure of homeothermic animals leads to higher thermogenesis and food consumption accompanied by weight loss. An analysis of cDNA-macroarray was employed to identify candidate mRNA species that encode proteins involved in thermogenic adaptation to cold. A cDNA-macroarray analysis, confirmed by RT-PCR, immunoblot, and RIA, revealed that the hypothalamic expression of melanin-concentrating hormone (MCH) is enhanced by exposure of rats to cold environment. The blockade of hypothalamic MCH expression by antisense MCH oligonucleotide in cold-exposed rats promoted no changes in feeding behavior and body temperature. However, MCH blockade led to a significant drop in body weight, which was accompanied by decreased liver glycogen, increased relative body fat, increased absolute and relative interscapular brown adipose tissue mass, increased uncoupling protein 1 expression in brown adipose tissue, and increased consumption of lean body mass. Thus, increased hypothalamic MCH expression in rats exposed to cold may participate in the process that allows for efficient use of energy for heat production during thermogenic adaptation to cold.


Assuntos
Temperatura Baixa , Metabolismo Energético/fisiologia , Hormônios Hipotalâmicos/fisiologia , Hipotálamo/metabolismo , Melaninas/fisiologia , Hormônios Hipofisários/fisiologia , Adaptação Fisiológica , Tecido Adiposo Marrom/metabolismo , Animais , Composição Corporal , Regulação da Temperatura Corporal , Peso Corporal/fisiologia , Proteínas de Transporte/metabolismo , Ingestão de Alimentos/fisiologia , Perfilação da Expressão Gênica , Glicogênio/metabolismo , Hormônios Hipotalâmicos/metabolismo , Canais Iônicos , Fígado/metabolismo , Masculino , Melaninas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio/fisiologia , Hormônios Hipofisários/metabolismo , Ratos , Ratos Wistar , Proteína Desacopladora 1
20.
Am J Physiol Endocrinol Metab ; 285(1): E216-23, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12644444

RESUMO

Insulin and leptin act in the hypothalamus, providing robust anorexigenic signals. The exposure of homeothermic animals to a cold environment leads to increased feeding, accompanied by sustained low levels of insulin and leptin. In the present study, the initial and intermediate steps of the insulin-signaling cascade were evaluated in the hypothalamus of cold-exposed Wistar rats. By immunohistochemistry, most insulin receptor (IR) and insulin receptor substrate-2 (IRS-2) immunoreactivity localized to the arcuate nucleus. Basal levels of tyrosine phosphorylation of IR and IRS-2 were increased in cold-exposed rats compared with rats maintained at room temperature. However, after an acute, peripheral infusion of exogenous insulin, significantly lower increases of IR and IRS-2 tyrosine phosphorylation were detected in the hypothalamus of cold-exposed rats. Insulin-induced association of p85/phosphatidylinositol 3-kinase with IRS-2, Ser473 phosphorylation of Akt, and tyrosine phosphorylation of ERK was significantly reduced in the hypothalamus of cold-exposed rats. To test the hypothesis of functional impairment of insulin signaling in the hypothalamus, intracerebroventricularly cannulated rats were acutely treated with insulin, and food ingestion was measured over a period of 12 h. Cold-exposed animals presented a significantly lower insulin-induced reduction in food consumption compared with animals maintained at room temperature. Hence, the present studies reveal that animals exposed to cold are resistant, both at the molecular and the functional level, to the actions of insulin in the hypothalamus.


Assuntos
Temperatura Baixa , Hipotálamo/fisiologia , Resistência à Insulina/fisiologia , Animais , Glicemia/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ácidos Graxos não Esterificados/sangue , Hormônios/sangue , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Immunoblotting , Injeções Intraventriculares , Insulina/administração & dosagem , Insulina/farmacologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Fosforilação , Testes de Precipitina , Ratos , Ratos Wistar , Resposta de Saciedade/fisiologia , Serina/metabolismo , Transdução de Sinais/fisiologia , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA