Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 56(2): 97, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453787

RESUMO

Phytonutrients (PTN) namely saponins (SP) and condensed tannins (CT) have been demonstrated to assess the effect of rumen fermentation and methane mitigation. Phytonutrient pellet containing mangosteen, rambutan, and banana flower (MARABAC) and lemongrass including PTN, hence these plant-phytonutrients supplementation could be an alternative plant with a positive effect on rumen fermentation. The aim of this experiment was to evaluate the effect of supplementation of MARABAC and lemongrass (Cymbopogon citratus) powder on in vitro fermentation modulation and the ability to mitigate methane production. The treatments were arranged according to a 3 × 3 Factorial arrangement in a completely randomized design. The two experimental factors consisted of MARABAC pellet levels (0%, 1%, and 2% of the total substrate) and lemongrass supplementation levels (0%, 1%, and 2% of the total substrate). The results of this study revealed that supplementation with MARABAC pellet and lemongrass powder significantly improved gas production kinetics (P < 0.01) and rumen fermentation end-products especially the propionate production (P < 0.01). While rumen methane production was subsequently reduced by both factors. Additionally, the in vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were greatly improved (P < 0.05) by the respective treatments. MARABAC pellet and lemongrass powder combination showed effective methane mitigation by enhancing rumen fermentation end-products especially the propionate concentration and both the IVDMD and IVOMD, while mitigated methane production. The combined level of both sources at 2% MARABAC pellet and 2% lemongrass powder of total substrates offered the best results. Therefore, MARABAC pellet and lemongrass powder supplementation could be used as an alternative source of phytonutrient in dietary ruminant.


Assuntos
Cymbopogon , Suplementos Nutricionais , Animais , Fermentação , Técnicas In Vitro/veterinária , Metano/metabolismo , Nutrientes , Compostos Fitoquímicos/metabolismo , Pós/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo
2.
Animals (Basel) ; 12(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35327180

RESUMO

The purpose of this study was to investigate the effects of linseed supplementation on milk yield and quality, serum biochemistry and, in particular, to evaluate its possible effects on the production of odd- and branched-chain fatty acids (OBCFA) in the milk of Cilentana grazing goats. Twelve pregnant Cilentana dairy goats were divided into two groups (CTR, control, and LIN, linseed supplementation group). After kidding, the goats had free access to the pasture and both groups received a supplement of 400 g/head of concentrate, but the one administered to the LIN group was characterized by the addition of linseed (in a ratio of 20% as fed) to the ingredients. During the trial, milk samples were taken from April to August in order to evaluate milk production, composition, and fatty acid profile. In addition, blood samples were taken for evaluating the effects of linseed supplementation on goats' health status. The health status of the goats was not influenced by the linseed supplementation, as confirmed by blood analyses. Concerning the effects on milk, the supplementation positively affected (p < 0.001) milk production and fat percentage and the fatty acid profile was markedly influenced by the lipid supplementation. In particular, milk from the LIN group was characterized by significantly lower concentrations of saturated fatty acids (FA; p < 0.001) and higher proportions of monounsaturated FA, polyunsaturated FA, and conjugated linoleic acids (CLAs) than milk from the CTR group (p < 0.001). In contrast, the OBCFA were negatively influenced by the linseed supplementation (p < 0.0001). Further studies are needed to test the effects of different fat sources and other nutrients on the diets.

3.
J Sci Food Agric ; 102(11): 4927-4932, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35266158

RESUMO

BACKGROUND: The aim of this research was to investigate the influence of bamboo grass (Tiliacora triandra, Diels) pellet (BP) containing phytonutrients on rumen fermentation under various level of roughage (R) to concentrate (C) ratios. The experimental treatments were randomly assigned following a completely randomized design using a 3 × 5 factorial arrangement. The first factor was ratios of R:C at 100:0, 70:30, and 30:70 and the second factor was BP supplementation levels at 0, 1, 2, 3, and 4% of dry matter substrate, respectively. RESULTS: The ratio of R:C significantly enhanced rumen gas production especially when increased level of concentrate. Moreover, dry matter degradability of fermentation were improved (P < 0.01) by R:C and level of BP supplementation, and there was an interactive effect. The ammonia nitrogen (NH3 -N) concentration, protozoal population and methane (CH4 ) production were remarkably influenced (P < 0.01). There were highly significant interactive effects between ratio of R:C and level of BP supplementation. Furthermore, fermentation parameters especially those of propionate (C3 ) concentration was profoundly increased by higher ratio of R:C and by the BP supplementation, interactive effect (P < 0.01). Notably, both level of R:C and BP supplementation significantly reduced NH3 -N concentration and CH4 production. Interactive effects of both factors were obtained (P < 0.01). CONCLUSION: The ratio of R:C at 30:70 with BP supplementation at 4% could enhance fermentation characteristics and reduce CH4 production, while the interactive effects were additionally observed. The BP could be a good phytonutrient source to modulate rumen fermentation. © 2022 Society of Chemical Industry.


Assuntos
Metano , Sasa , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais , Digestão , Fermentação , Metano/metabolismo , Rúmen/metabolismo
4.
Anim Biosci ; 34(10): 1607-1615, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33677917

RESUMO

OBJECTIVE: Chaya (Cnidoscolus aconitifolius) leaf has been found to be an important source of protein, vitamins, minerals, as well as phytonutrients. The present study aimed to evaluate the effect of Chaya leaf pellet (CHYP) with various level of crude protein (CP) in the concentrate on rumen fermentation characteristics and nutrient degradability in in vitro gas production technique. METHODS: In an in vitro rumen fermentation study the dietary treatments were arranged according to a 3×5 factorial arrangement in a completely randomized design, consisting of Factor A: three levels of CP of concentrate mixtures (14%, 16%, and 18% CP, respectively) and Factor B: five levels of CHYP supplementation (at 0%, 2%, 4%, 6%, and 8% of dry matter substrates). RESULTS: The gas production kinetics, fraction (a) and fraction (b) were lower (p<0.05) with an increasing CHYP addition. Additionally, the fraction (a+b) was found to yield a significant interaction (p<0.05) while the fraction (c) was not impacted by CHYP addition. However, in vitro DM degradability was enhanced and interactive (p<0.05), using 16% CP of concentrate with 6% and 8% CHYP, when compared with 18% CP in the non-addition. Additionally, the treatment with higher CP of the concentrate was higher in NH3-N concentration (p<0.001) and by CHYP supplementation group (p<0.05). Nevertheless, protozoal counts in the rumen were remarkably decreased (p<0.05) with increasing level of CHYP supplementation. Furthermore, rumen C2 concentration was lower (p<0.05) in the treatments with CHYP supplementation, while C3 was significantly increased and interactive (p<0.05) between levels of CP and CHYP supplementation especially at 8% CHYP supplementation. CONCLUSION: Based on this study, the results revealed CHYP as a promising feed supplement to enhance rumen fermentation and to mitigate methane production. However, in vivo feeding experiments should be subsequently conducted to elucidate the effect of CHYP supplementation on rumen fermentation, as well as ruminant production efficiency.

5.
Trop Anim Health Prod ; 52(6): 3567-3573, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32944871

RESUMO

The aim of this experiment was to test the effect of yeast-fermented de-hulled rice (YDR) levels of protein-rich feed with different kinds of roughages on in vitro gas production, nutrient degradability, and rumen fermentation. The treatments were randomly assigned according to a 2 × 4 factorial arrangement in a completely randomized design (CRD). The two experimental factors were comprised of two roughages (R) (untreated rice straw (RS) and sweet grass hay (SGH)) and four ratios of roughage to yeast-fermented de-hulled rice (R:YDR) (100:0, 75:25, 50:50, and 25:75). Thus, there were 8 treatment combinations. The results revealed that the interaction between R and R:YDR ratios influenced on the gas production rate constant for the insoluble fraction ratio (c) (P < 0.01). The in vitro dry mater degradability (IVDMD) was improved by SGH and R:YDR ratios (P < 0.05). Supplementation of YDR with both of roughage sources (RS and SGH) increased propionate (C3) (P < 0.05) and total VFA production (P < 0.01); both factors showed interactive effects on rumen methane production (P < 0.01). Moreover, bacterial population was significantly increased by the SGH:YDR ratios (P < 0.05). Therefore, it could be summarized that supplementing YDR, an enriched protein source with SGH:YDR ratio at 50-75:50-25 ratio significantly enhanced nutrient degradability and in vitro rumen fermentation efficiency.


Assuntos
Fibras na Dieta/análise , Digestão , Fermentação , Gases/metabolismo , Nutrientes/fisiologia , Oryza/química , Saccharomyces cerevisiae/química , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Grão Comestível/química , Distribuição Aleatória , Rúmen/fisiologia
6.
Trop Anim Health Prod ; 52(4): 2035-2041, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32016880

RESUMO

The principle of the study was to assess the influence of yeast-fermented cassava pulp (YFCP) as a protein supplement on feed intake, nutrient digestibilities, rumen microbial protein synthesis, fermentation end-products, and N-balance in Thai native beef cattle. The experiment was conducted following the 4 × 4 Latin square design using 4 levels of YFCP supplementation (0, 100, 200, and 300 g/head/day) in 3-year-old Thai native beef cattle crossbreds. The response of YFCP supplementation level using rice straw as a roughage source revealed promising results. The rumen ecology parameters including cellulolytic, amylolytic, and proteolytic bacterial population were significantly increased while the protozoal population were reduced, as affected by increasing level of YFCP supplementation (P < 0.05). In parallel with these results, totals VFA, propionate (C3) production in the rumen, and the ratio of C2:C3 were remarkably increased (P < 0.01), while rumen methane production by prediction from VFA was decreased (P < 0.01), as YFCP supplementation increased. Regarding, the nutrient digestibilities, those of OM and CP were remarkably enhanced (P < 0.01), hence increased DM intake. Furthermore, the use of YFCP at high level resulted in the highest N-balance and N retention absorption (P < 0.01). The results indicated that YFCP can be nutritionally enhanced by yeast fermentation, thus is promising to be used as a protein source in ruminant feeding.


Assuntos
Dieta/veterinária , Digestão/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Manihot/química , Nitrogênio/metabolismo , Nutrientes/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bovinos , Suplementos Nutricionais/análise , Digestão/fisiologia , Relação Dose-Resposta a Droga , Feminino , Fermentação , Alimentos Fermentados , Microbioma Gastrointestinal/fisiologia , Masculino , Rúmen/microbiologia , Saccharomyces cerevisiae/metabolismo , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA