Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Lett ; 217(3): 217-25, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23296105

RESUMO

Uranium nanoparticles (<100 nm) can be released into the atmosphere during industrial stages of the nuclear fuel cycle and during remediation and decommissioning of nuclear facilities. Explosions and fires in nuclear reactors and the use of ammunition containing depleted uranium can also produce such aerosols. The risk of accidental inhalation of uranium nanoparticles by nuclear workers, military personnel or civilian populations must therefore be taken into account. In order to address this issue, the absorption rate of inhaled uranium nanoparticles needs to be characterised experimentally. For this purpose, rats were exposed to an aerosol containing 107 particles of uranium per cm³ (CMD=38 nm) for 1h in a nose-only inhalation exposure system. Uranium concentrations deposited in the respiratory tract, blood, brain, skeleton and kidneys were determined by ICP-MS. Twenty-seven percent of the inhaled mass of uranium nanoparticles was deposited in the respiratory tract. One-fifth of UO2 nanoparticles were rapidly cleared from lung (T(½)=2.4 h) and translocated to extrathoracic organs. However, the majority of the particles were cleared slowly (T(½)=141.5 d). Future long-term experimental studies concerning uranium nanoparticles should focus on the potential lung toxicity of the large fraction of particles cleared slowly from the respiratory tract after inhalation exposure.


Assuntos
Nanopartículas Metálicas/toxicidade , Sistema Respiratório/metabolismo , Urânio/farmacocinética , Urânio/toxicidade , Administração por Inalação , Animais , Masculino , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Sistema Respiratório/efeitos dos fármacos , Estatísticas não Paramétricas
2.
Toxicol Lett ; 190(1): 66-73, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19501638

RESUMO

Uranium presents numerous industrial and military uses and one of the most important risks of contamination is dust inhalation. In contrast to the other modes of contamination, the inhaled uranium has been proposed to enter the brain not only by the common route of all modes of exposure, the blood pathway, but also by a specific inhalation exposure route, the olfactory pathway. To test whether the inhaled uranium enter the brain directly from the nasal cavity, male Sprague-Dawley rats were exposed to both inhaled and intraperitoneally injected uranium using the (236)U and (233)U, respectively, as tracers. The results showed a specific frontal brain accumulation of the inhaled uranium which is not observed with the injected uranium. Furthermore, the inhaled uranium is higher than the injected uranium in the olfactory bulbs (OB) and tubercles, in the frontal cortex and in the hypothalamus. In contrast, the other cerebral areas (cortex, hippocampus, cerebellum and brain residue) did not show any preferential accumulation of inhaled or injected uranium. These results mean that inhaled uranium enters the brain via a direct transfer from the nasal turbinates to the OB in addition to the systemic pathway. The uranium transfer from the nasal turbinates to the OB is lower in animals showing a reduced level of olfactory receptor neurons (ORN) induced by an olfactory epithelium lesion prior to the uranium inhalation exposure. These results give prominence to a role of the ORN in the direct transfer of the uranium from the nasal cavity to the brain.


Assuntos
Encéfalo/metabolismo , Exposição por Inalação/análise , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Urânio/farmacocinética , Aerossóis , Animais , Transporte Biológico , Injeções Intraperitoneais , Masculino , Condutos Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/metabolismo , Ratos , Ratos Sprague-Dawley , Urânio/toxicidade , Sulfato de Zinco/farmacologia
3.
Radiat Prot Dosimetry ; 127(1-4): 64-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17611198

RESUMO

Some beaches in the south of France present high levels of natural radioactivity mainly due to thorium (Th) and uranium (U) present in the sand. Risk assessment after internal exposure of members of the public by either inhalation or ingestion of black sand of Camargue was performed. This evaluation required some information on the human bioavailability of U and Th from this sand. In vitro assays to determine the solubility of U, Th and their progeny were performed either in simulated lung fluid, with the inhalable fraction of sand, or in both simulated gastric and intestinal fluids with a sample of the whole sand. The experimental data show that the bioavailability of these radionuclides from Camargue sand is low in the conditions of the study. Prospective dose assessment for both routes of intake show low risk after internal exposure to this sand.


Assuntos
Carga Corporal (Radioterapia) , Exposição Ambiental/análise , Modelos Biológicos , Medição de Risco/métodos , Dióxido de Silício/farmacocinética , Poluentes Radioativos do Solo/farmacocinética , Tório/farmacocinética , Urânio/farmacocinética , Simulação por Computador , França , Humanos , Monitoramento de Radiação/métodos , Fatores de Risco , Dióxido de Silício/análise , Poluentes Radioativos do Solo/análise , Tório/análise , Urânio/análise , Contagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA