Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 4(3): 346-355, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127685

RESUMO

Dairy pastoralism is integral to contemporary and past lifeways on the eastern Eurasian steppe, facilitating survival in agriculturally challenging environments. While previous research has indicated that ruminant dairy pastoralism was practiced in the region by circa 1300 BC, the origin, extent and diversity of this custom remain poorly understood. Here, we analyse ancient proteins from human dental calculus recovered from geographically diverse locations across Mongolia and spanning 5,000 years. We present the earliest evidence for dairy consumption on the eastern Eurasian steppe by circa 3000 BC and the later emergence of horse milking at circa 1200 BC, concurrent with the first evidence for horse riding. We argue that ruminant dairying contributed to the demographic success of Bronze Age Mongolian populations and that the origins of traditional horse dairy products in eastern Eurasia are closely tied to the regional emergence of mounted herding societies during the late second millennium BC.


Assuntos
Agricultura , Indústria de Laticínios , Agricultura/história , Animais , Bovinos , Indústria de Laticínios/história , Europa (Continente) , História Antiga , Cavalos , Humanos , Dinâmica Populacional , Condições Sociais
2.
Proc Natl Acad Sci U S A ; 115(48): E11248-E11255, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30397125

RESUMO

Recent paleogenomic studies have shown that migrations of Western steppe herders (WSH) beginning in the Eneolithic (ca. 3300-2700 BCE) profoundly transformed the genes and cultures of Europe and central Asia. Compared with Europe, however, the eastern extent of this WSH expansion is not well defined. Here we present genomic and proteomic data from 22 directly dated Late Bronze Age burials putatively associated with early pastoralism in northern Mongolia (ca. 1380-975 BCE). Genome-wide analysis reveals that they are largely descended from a population represented by Early Bronze Age hunter-gatherers in the Baikal region, with only a limited contribution (∼7%) of WSH ancestry. At the same time, however, mass spectrometry analysis of dental calculus provides direct protein evidence of bovine, sheep, and goat milk consumption in seven of nine individuals. No individuals showed molecular evidence of lactase persistence, and only one individual exhibited evidence of >10% WSH ancestry, despite the presence of WSH populations in the nearby Altai-Sayan region for more than a millennium. Unlike the spread of Neolithic farming in Europe and the expansion of Bronze Age pastoralism on the Western steppe, our results indicate that ruminant dairy pastoralism was adopted on the Eastern steppe by local hunter-gatherers through a process of cultural transmission and minimal genetic exchange with outside groups.


Assuntos
Criação de Animais Domésticos/história , Genoma Humano , Dinâmica Populacional/história , Animais , Arqueologia , DNA Mitocondrial/genética , Europa (Continente) , Feminino , História Antiga , Migração Humana/história , Humanos , Masculino , Mongólia
3.
Proc Biol Sci ; 285(1883)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30051838

RESUMO

Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein ß-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (eighth century BC to nineteenth century AD) in England, as well as 14 dental calculus samples from contemporary dental patients and recently deceased individuals, to characterize the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detect proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches and authentication strategies in the identification of dietary proteins from archaeological dental calculus. This study demonstrates that proteomic approaches can robustly identify foodstuffs in the archaeological record that are typically under-represented due to their poor macroscopic preservation.


Assuntos
Cálculos Dentários/química , Dieta/história , Proteoma , Arqueologia , DNA Antigo/análise , Inglaterra , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História Antiga , História Medieval
4.
J Biol Chem ; 287(30): 25640-9, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22613721

RESUMO

CsTx-1, the main neurotoxic acting peptide in the venom of the spider Cupiennius salei, is composed of 74 amino acid residues, exhibits an inhibitory cysteine knot motif, and is further characterized by its highly cationic charged C terminus. Venom gland cDNA library analysis predicted a prepropeptide structure for CsTx-1 precursor. In the presence of trifluoroethanol, CsTx-1 and the long C-terminal part alone (CT1-long; Gly-45-Lys-74) exhibit an α-helical structure, as determined by CD measurements. CsTx-1 and CT1-long are insecticidal toward Drosophila flies and destroys Escherichia coli SBS 363 cells. CsTx-1 causes a stable and irreversible depolarization of insect larvae muscle cells and frog neuromuscular preparations, which seem to be receptor-independent. Furthermore, this membranolytic activity could be measured for Xenopus oocytes, in which CsTx-1 and CT1-long increase ion permeability non-specifically. These results support our assumption that the membranolytic activities of CsTx-1 are caused by its C-terminal tail, CT1-long. Together, CsTx-1 exhibits two different functions; as a neurotoxin it inhibits L-type Ca(2+) channels, and as a membranolytic peptide it destroys a variety of prokaryotic and eukaryotic cell membranes. Such a dualism is discussed as an important new mechanism for the evolution of spider venomous peptides.


Assuntos
Evolução Molecular , Neurotoxinas/química , Venenos de Aranha/química , Aranhas/química , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , DNA Complementar/genética , Drosophila melanogaster , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Feminino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Neurotoxinas/genética , Estrutura Terciária de Proteína , Rana temporaria , Venenos de Aranha/genética , Aranhas/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA