Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytochemistry ; 218: 113938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061483

RESUMO

Four previously undescribed carvotacetones including one monomeric (1) and three dimeric (8, 9, 10) derivatives, together with six known compounds were isolated from the n-hexane extract of the aerial parts of Sphaeranthus africanus L. The structures of the previously undescribed compounds were elucidated as 3-angeloyloxy-5-isobutanoyloxy-7-hydroxycarvotacetone (1), 7,7'-oxybis{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbutanoyloxy]carvotacetone} (8), (2″S*,3″R*)-7-{3-angeloyloxy-5-[(2R*,3R*)-2,3-dihydroxy-2-methylbuta-noyloxy]carvotaceton-7-yloxy}-3-angeloyloxy-5-(2,3-dihydroxy-2-methylbutanoyloxy)carvo-tacetone (9), and 7,7'-oxybis{3-angeloyloxy-5-[(2S*,3R*)-2,3-dihydroxy-2-methylbutanoyl-oxy]carvotacetone} (10). The three dimeric derivatives (8-10) showed potent anti-proliferative activity against human cancer cell lines (CCRF-CEM, MDA-MB-231, U-251, HCT-116) with IC50 values ranging from 0.2 to 2.0 µM. Caspases 3 and 7 were found to be activated by all compounds, indicating apoptosis induction activity. Monomers exhibited a specific inhibition of NO production in BV2 and RAW 264.7 cells with IC50 values ranging from 4.2 to 6.8 µM which were 2-3.5-fold lower than IC50 values causing cytotoxicity. In addition, the carvotacetones reduced NF-κB1 (p105) mRNA expression at concentrations of 10 and 2.5 µM. Altogether, the results indicate that carvotacetones may be interesting lead structures for the development of anti-cancer and anti-inflammatory drugs.


Assuntos
Asteraceae , Cicloexanonas , Humanos , Linhagem Celular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Asteraceae/química
2.
J Fungi (Basel) ; 9(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37888227

RESUMO

The medicinal mushroom Cordyceps militaris is widely exploited in traditional medicine and nutraceuticals in Asian countries. However, fruiting body production in C. militaris is facing degeneration through cultivation batches, and the molecular mechanism of this phenomenon remains unclear. This study showed that fruiting body formation in three different C. militaris strains, namely G12, B12, and HQ1, severely declined after three successive culturing generations using the spore isolation method. PCR analyses revealed that these strains exist as heterokaryons and possess both the mating-type loci, MAT1-1 and MAT1-2. Further, monokaryotic isolates carrying MAT1-1 or MAT1-2 were successfully separated from the fruiting bodies of all three heterokaryotic strains. A spore combination of the MAT1-1 monokaryotic isolate and the MAT1-2 monokaryotic isolate promoted fruiting body formation, while the single monokaryotic isolates could not do that themselves. Notably, we found that changes in ratios of the MAT1-2 spores strongly influenced fruiting body formation in these strains. When the ratios of the MAT1-2 spores increased to more than 15 times compared to the MAT1-1 spores, the fruiting body formation decreased sharply. In contrast, when MAT1-1 spores were increased proportionally, fruiting body formation was only slightly reduced. Our study also proposes a new solution to mitigate the degeneration in the heterokaryotic C. militaris strains caused by successive culturing generations.

3.
Appl Microbiol Biotechnol ; 107(17): 5367-5378, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436482

RESUMO

Fermentation technology using endophytes is considered a potential alternative approach for producing pharmaceutical compounds like podophyllotoxin (PTOX). In this study, fungus TQN5T (VCCM 44284) was selected from endophytic fungi isolated from Dysosma versipellis in Vietnam for PTOX production through TLC. The presence of PTOX in TQN5T was further confirmed by HPLC. Molecular identification indicated TQN5T as Fusarium proliferatum with 99.43% identity. This result was asserted by morphological characteristics such as white cottony, filamentous colony, layer and branched mycelium, and clear hyphae septa. Cytotoxic assay indicated both biomass extract and culture filtrate of TQN5T presented strong cytotoxicity on LU-1 and HepG2 with IC50 of 0.11, 0.20, 0.041, and 0071, respectively, implying anti-cancer compounds were accumulated in the mycelium and secreted into the medium. Further, the production of PTOX in TQN5T was investigated in the fermentation condition supplemented with 10 µg/ml of host plant extract or phenylalanine as elicitors. The results revealed a significantly higher amount of PTOX in the PDB + PE and PDB + PA at all studied time points in comparison with PDB (control). Especially, after 168 h of culture, PTOX content in the PDB with plant extract reached the peak with 314 µg/g DW which is 10% higher than the best yield of PTOX in previous studies, denoting F. proliferatum TQN5T as a promising PTOX producer. This is the first study on enhancing the PTOX production in endophytic fungi by supplementing phenylalanine-a precursor for PTOX biosynthesis in plants into fermented media, suggesting a common PTOX biosynthetic pathway between host plant and endophytes. KEY POINTS: • Fusarium proliferatum TQN5T was proven for PTOX production. • Both mycelia extract and spent broth extract of Fusarium proliferatum TQN5T presented strong cytotoxicity on cancer cell lines LU-1 and HepG2. • The supplementation of 10 µg/ml host plant extract and phenylalanine into fermentation media of F. proliferatum TQN5T improved the yield of PTOX.


Assuntos
Fusarium , Podofilotoxina , Podofilotoxina/metabolismo , Endófitos/metabolismo , Fusarium/metabolismo , Extratos Vegetais/metabolismo , Plantas/metabolismo
4.
Planta Med ; 89(6): 624-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36720230

RESUMO

Three carvotacetones (1 - 3: ) isolated from Sphaeranthus africanus were screened in 60 cancer cell lines at the National Cancer Institute (NCI) within the Developmental Therapeutics Program (DTP). At the concentration of 10-5 M, compound 1: (3,5-diangeloyloxy-7-hydroxycarvotacetone) turned out to be the most active compound against ACHN and UO-31 renal cancer cell lines with growth percent values of - 100% (all cells dead). Compound 2: (3-angeloyloxy-5-[2″,3″-epoxy-2″-methylbutanoyloxy]-7-hydroxycarvotacetone) showed strong effects in SK-MEL-5 melanoma and ACHN renal cancer cells with inhibition values of 93% and 97%, respectively. Compound 3: (3-angeloyloxy-5-[3″-chloro-2″-hydroxy-2″-methylbutanoyloxy]-7-hydroxy-carvotacetone) exhibited a quite strong effect on renal cancer cells with a growth inhibitory effect of 96% against ACHN and UO-31 cells. When treated with five different concentrations of 1: (1 × 10-8, 1 × 10-7, 1 × 10-6, 1 × 10-5, and 1 × 10-4 M), HOP-92 cells were found to be most sensitive with GI50, TGI, and LC50 values of 0.17, 0.40, and 0.96 µM, respectively. When using the ApoTox-Glo triplex assay to evaluate the apoptosis inducing effects of seven carvotacetones isolated from S. africanus in CCRF-CEM cells, compounds 1:  - 6: increased caspase-3/7 activity with 1, 2: , and 4: (3-angeloyloxy-5,7-dihydroxycarvotacetone) exhibiting the highest activitiy, indicating induction of caspase-dependent apoptosis.


Assuntos
Asteraceae , Neoplasias Renais , Linhagem Celular Tumoral , Apoptose , Neoplasias Renais/tratamento farmacológico
5.
Sci Rep ; 12(1): 14627, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028578

RESUMO

Tobacco is an important commercial crop and a rich source of alkaloids for pharmaceutical and agricultural applications. However, its yield can be reduced by up to 70% due to virus infections, especially by a potyvirus Potato virus Y (PVY). The replication of PVY relies on host factors, and eukaryotic translation initiation factor 4Es (eIF4Es) have already been identified as recessive resistance genes against potyviruses in many plant species. To investigate the molecular basis of PVY resistance in the widely cultivated allotetraploid tobacco variety K326, we developed a dual guide RNA CRISPR/Cas9 system for combinatorial gene editing of two clades, eIF4E1 (eIF4E1-S and eIF4E1-T) and eIF4E2 (eIF4E2-S and eIF4E2-T) in the eIF4E gene family comprising six members in tobacco. We screened for CRISPR/Cas9-induced mutations by heteroduplex analysis and Sanger sequencing, and monitored PVYO accumulation in virus challenged regenerated plants by DAS-ELISA both in T0 and T1 generations. We found that all T0 lines carrying targeted mutations in the eIF4E1-S gene displayed enhanced resistance to PVYO confirming previous reports. More importantly, our combinatorial approach revealed that eIF4E1-S is necessary but not sufficient for complete PVY resistance. Only the quadruple mutants harboring loss-of-function mutations in eIF4E1-S, eIF4E1-T, eIF4E2-S and eIF4E2-T showed heritable high-level resistance to PVYO in tobacco. Our work highlights the importance of understanding host factor redundancy in virus replication and provides a roadmap to generate virus resistance by combinatorial CRISPR/Cas9-mediated editing in non-model crop plants with complex genomes.


Assuntos
Potyvirus , Solanum tuberosum , Sistemas CRISPR-Cas , Mutação , Doenças das Plantas , Nicotiana
6.
Phytomedicine ; 62: 152951, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31136898

RESUMO

BACKGROUND: Sphaeranthus africanus has been used in traditional Vietnamese medicine to treat sore throat, and to relieve pain and swelling. However, the anti-inflammatory activity of this plant had not yet been investigated. Previously, we isolated five carvotacetones (1-5) from this plant that displayed cytotoxicity against several cancer cell lines. PURPOSE: The objective of this study was to isolate further constituents from S. africanus and to investigate the anti-inflammatory activity of all constituents. Furthermore, the anti-proliferative activity of the newly isolated compounds was evaluated. STUDY DESIGN AND METHODS: Compounds were isolated from the upper parts of S. africanus by chromatographic methods. Structures were determined using spectroscopic techniques, like NMR and MS. All nine compounds isolated from S. africanus were evaluated for inhibitory activity against COX-1 and COX-2 isoenzymes in-vitro, COX-2 mRNA expression and influence on NO production. The anti-proliferative activities of newly isolated compounds (6-9) were evaluated by XTT viability assay with four cancer cell lines, namely CCRF-CEM, MDA-MB-231, HCT-116, and U-251 cells. RESULTS: Two diastereomeric carvotacetones (3-angeloyloxy-5-[2″S,3″R-dihydroxy-2″-methyl-butanoyloxy]-7-hydroxycarvotacetone (6) and 3-angeloyloxy-5-[2″R,3″R-dihydroxy-2″-methyl-butanoyloxy]-7-hydroxycarvotacetone (7), asperglaucide (8) and chrysoplenol D (9) were isolated from S. africanus. COX-1 and COX-2 assays of compounds 1-9 revealed that compounds 1 and 2 possess potent and selective COX-2 inhibitory activity with IC50 values of 3.6 and 0.5 µM, respectively. COX-2 gene expression assay showed that some carvotacetones exhibited inhibitory effects on COX-2 gene expression in THP-1 macrophages. Compound 4 is the most active compound inhibiting the synthesis of COX-2 by 55% at 2.06 µM. In the iNOS assay, all seven carvotacetones inhibited NO production in BV2 and RAW cell lines with IC50 values ranging from 0.2 to 2.9 µM. Compound 4 showed potent inhibitory activity with IC50 values of 0.2 µM in both BV2 and RAW cell lines. Molecular docking studies revealed the binding orientations of 1 and 2 in the active sites of COX-2. XTT assay of the newly isolated compounds revealed that the two isomeric carvotacetones (6-7) exhibited considerable anti-proliferative activity against four cancer cell lines (CCRF-CEM, MDA-MB-231, HCT-116, U-251) with IC50 values ranging from 1.23 to 8 µM. CONCLUSION: For the first-time, the diastereomeric carvotacetones (6-7) were isolated as separate compounds, and their anti-proliferative activity was determined. Selective COX-2 inhibitory, COX-2 mRNA expression and NO production inhibitory activities by some of the major constituents of S. africanus supports the traditional medical application of this plant for the treatment of inflammation-related disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Inibidores de Ciclo-Oxigenase/farmacologia , Animais , Anti-Inflamatórios/química , Antineoplásicos Fitogênicos/química , Linhagem Celular , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Macrófagos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Componentes Aéreos da Planta/química , Plantas Medicinais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA