Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Oncol ; 40(5): 133, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010624

RESUMO

In pancreatic cancer, healthy cells in the pancreas begin to malfunction and proliferate out of control. According to our conventional knowledge, many plants contain several novel bioactive compounds, having pharmaceutical applications for the treatment of disease like pancreatic cancer. The methanolic fraction of fruit extract of Trema orientalis L. (MFETO) was analysed through HRMS. In this in silico study, pharmacokinetic and physicochemical properties of the identified flavonoids from MFETO were screened out by ADMET analysis. Kaempferol and catechin followed Lipinski rules and showed no toxicity in Protox II. Targets of these compounds were taken from SwissTarget prediction and TCMSP whilst targets for pancreatic cancer were taken from GeneCards and DisGeNET databases. The protein-protein interaction (PPI) network of common genes was generated through STRING and then exported to the Cytoscape to get top 5 hub genes (AKT1, SRC, EGFR, TNF, and CASP3). The interaction between compounds and hub genes was analysed using molecular docking, and high binding affinity between them can be visualised by Biovia discovery studio visualizer. Our study shows that, five hub genes related to pancreatic cancer play an important role in tumour growth induction, invasion and migration. Kaempferol effectively check cell migration by inhibiting ERK1/2, EGFR-related SRC, and AKT pathways by scavenging ROS whilst catechin inhibited TNFα-induced activation and cell cycle arrest at G1 and G2/M phases by induction of apoptosis of malignant cells. Kaempferol and catechin containing MFETO can be used for formulation of potent drugs for pancreatic cancer treatment in future.


Assuntos
Catequina , Medicamentos de Ervas Chinesas , Neoplasias , Trema , Humanos , Catequina/farmacologia , Quempferóis/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Receptores ErbB , Neoplasias Pancreáticas
2.
Rev Bras Farmacogn ; 33(2): 272-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778891

RESUMO

Alpha-lipoic acid is an organic, sulfate-based compound produced by plants, humans, and animals. As a potent antioxidant and a natural dithiol compound, it performs a crucial role in mitochondrial bioenergetic reactions. A healthy human body, on the other hand, can synthesize enough α-lipoic acid to scavenge reactive oxygen species and increase endogenous antioxidants; however, the amount of α-lipoic acid inside the body decreases significantly with age, resulting in endothelial dysfunction. Molecular orbital energy and spin density analysis indicate that the sulfhydryl (-SH) group of molecules has the greatest electron donating activity, which would be responsible for the antioxidant potential and free radical scavenging activity. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties. α-Lipoic acid has cytotoxic and antiproliferative effects on several cancers, including polycystic ovarian syndrome. It also has usefulness in the context of female and male infertility. Although α-lipoic acid has numerous clinical applications, the majority of them stem from its antioxidant properties; however, its bioavailability in its pure form is low (approximately 30%). However, nanoformulations have shown promise in this regard. The proton affinity and electron donating activity, as a redox-active agent, would be responsible for the antioxidant potential and free radical scavenging activity of the molecule. This review discusses the most recent clinical data on α-lipoic acid in the prevention, management, and treatment of a variety of diseases, including coronavirus disease 2019. Based on current evidence, the preclinical and clinical potential of this molecule is discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00370-1.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36776226

RESUMO

Vitamin D3 is a secosteroid, broad-spectrum immunomodulatory, antioxidant, and anti-inflammatory hormone produced either by the internal subcutaneous pathway in the presence of ultraviolet B (UVB) rays or by the external pathway in the form of supplements. Vitamin D3 deficiency is a common and reversible contributor to mortality and morbidity among critically ill patients, including Coronavirus Disease 2019 (COVID-19) and other viral infections. The major functions of vitamin D3 are inhibiting the proinflammatory pathways, including nuclear factor kappa B (NF-kB), inflammatory cytokines, such as interleukin-6 (ILs-6), interleukin-18 (ILs-18), and tumour necrosis factor (TNF), preventing the loss of neural sensation in COVID-19, maintaining respiratory homeostasis, and acting as an antiviral, antimalarial, and antihypertensive agent. Vitamin D3 has an important role in reversing the COVID-19 infection in patients who have previously suffered from a neurological disease, such as Alzheimer's disease, Parkinson disease, motor neuron disease, multiple sclerosis, Creutzfeldt-Jakob disease, stroke, cardiovascular problems, headache, sleep-associated disorder, and others. Moreover, vitamin D3 plays a key role in regulating the gene expression of different pro-inflammatory cytokines. In addition to the information provided above, the current review article provides the most recent information on Vitamin D against COVID-19 with comorbid neurological disorders. Furthermore, we present the most recent advancement and molecular mechanism of action of vitamin D3. Diabetes, cardiovascular disease, and neurological disorders are comorbid conditions, and vitamin D3 is a critical regulator of COVID-19 infection during these conditions. In the midst of the COVID-19 epidemic, factors such as sex, latitudes, nutrition, demography, pollution, and gut microbiota warrants for additional research on vitamin D supplements.

4.
Mol Cancer ; 12(1): 122, 2013 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-24138843

RESUMO

BACKGROUND: The hypoxic environment of tumor region stimulated the up regulation of growth factors responsible for angiogenesis and tumor proliferation. Thus, targeting the tumor vasculature along with the proliferation by dual tyrosine kinase inhibitor may be the efficient way of treating advanced breast cancers, which can be further enhanced by combining with radiotherapy. However, the effectiveness of radiotherapy may be severely compromised by toxicities and tumor resistance due to radiation-induced adaptive response contributing to recurrence and metastases of breast cancer. The rational of using ZD6474 is to evaluate the feasibility and efficacy of combined VEGFR2 and EGFR targeting with concurrent targeted and localized UV-B phototherapy in vitro breast cancer cells with the anticipation to cure skin lesions infiltrated with breast cancer cells. MATERIALS AND METHODS: Breast cancer cells were exposed to UV-B and ZD6474 and the cell viability, apoptosis, invasion and motility studies were conducted for the combinatorial effect. Graphs and statistical analyses were performed using Graph Pad Prism 5.0. RESULTS: ZD6474 and UV-B decreased cell viability in breast cancers in combinatorial manner without affecting the normal human mammary epithelial cells. ZD6474 inhibited cyclin E expression and induced p53 expression when combined with UV-B. It activated stress induced mitochondrial pathway by inducing translocation of bax and cytochrome-c. The combination of ZD6474 with UV-B vs. either agent alone also more potently down-regulated the anti-apoptotic bcl-2 protein, up-regulated pro-apoptotic signaling events involving expression of bax, activation of caspase-3 and caspase-7 proteins, and induced poly (ADP-ribose) polymerase resulting in apoptosis. ZD6474 combined with UV-B inhibited invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of pro-angiogenic growth factors in regulating the altered expression and reorganization of cytoskeletal proteins in combinatorial treated breast cancer cells. Involvement of combination therapy in reducing the expression of matrix metalloprotease was also observed. CONCLUSIONS: Collectively, our studies indicate that incorporating an anti-EGFR plus VEGFR strategy (ZD6474) with phototherapy (UV-B), an alternative approach to the ongoing conventional radiotherapy for the treatment of infiltrating metastatic breast cancer cells in the skin and for locally recurrence breast cancer than either approach alone.


Assuntos
Neoplasias da Mama/terapia , Receptores ErbB/metabolismo , Piperidinas/farmacologia , Quinazolinas/farmacologia , Raios Ultravioleta , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Caspase 7/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Terapia Combinada , Citoesqueleto/metabolismo , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Terapia de Alvo Molecular , Fototerapia , Terapia Ultravioleta , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA