Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Trop ; 214: 105778, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33253656

RESUMO

We are living through an unprecedented crisis with the rapid spread of the new coronavirus disease (COVID-19) worldwide within a short time. The timely availability of thousands of SARS-CoV-2 genomes has enabled the scientific community to study the origin, structures, and pathogenesis of the virus. The pandemic has spurred research publication and resulted in an unprecedented number of therapeutic proposals. Because the development of new drugs is time consuming, several strategies, including drug repurposing and repositioning, are being tested to treat patients with COVID-19. Researchers have developed several potential vaccine candidates that have shown promise in phase II and III trials. As of 12 November 2020, 164 candidate vaccines are in preclinical evaluation, and 48 vaccines are in clinical evaluation, of which four have cleared phase III trials (Pfizer/BioNTech's BNT162b2, Moderna's mRNA-1273, University of Oxford & AstraZeneca's AZD1222, and Gamaleya's Sputnik V vaccine). Despite the acquisition of a vast body of scientific information, treatment depends only on the clinical management of the disease through supportive care. At the pandemic's 1-year mark, we summarize current information on SARS-CoV-2 origin and biology, and advances in the development of therapeutics. The updated information presented here provides a comprehensive report on the scientific progress made in the past year in understanding of SARS-CoV-2 biology and therapeutics.


Assuntos
COVID-19/terapia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Amidas/uso terapêutico , Animais , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/transmissão , Vacinas contra COVID-19 , Cloroquina/uso terapêutico , Ensaios Clínicos como Assunto , Coronavirus/genética , Infecções por Coronavirus/transmissão , Combinação de Medicamentos , Reposicionamento de Medicamentos , Glucocorticoides/uso terapêutico , Humanos , Hidroxicloroquina/uso terapêutico , Indóis/uso terapêutico , Ivermectina/uso terapêutico , Lopinavir/uso terapêutico , Mutação , Pandemias , Fitoterapia , Extratos Vegetais/uso terapêutico , Pirazinas/uso terapêutico , Ritonavir/uso terapêutico , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus , Tinospora , Zoonoses Virais
2.
J Pharm Pharmacol ; 70(8): 985-993, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29663387

RESUMO

OBJECTIVES: Alzheimer's disease (AD) has become the primary cause of dementia. It shows a progressive cognitive dysfunction with degenerating neurons. Acetylcholine receptors (AChRs) propagate the cognitive ability and it consists of two primary members namely muscarinic (mAChRs) and nicotinic receptors (nAChRs). Where mAChRs is G-protein coupled receptor, (nAChRs) are ligand-gated ion channels. The conventional therapeutic regimen for AD consists of three acetylcholinestearse inhibitors while a single NMDA receptor antagonist. Researchers around the globe are developing new and modifying the existing AChRs agonists to develop lead candidates with lower risk to benefit ratio where benefits clearly outweigh the adverse events. KEY FINDINGS: We have searched PubMed, MEDLINE, Google scholar, Science Direct and, Web of Science with keywords "Muscarinic/Nicotinic acetylcholine receptor, agonists and, AD". The literature search included articles written in English. Scientific relevance for clinical studies, basic science studies is eligibility criteria for articles referred in this paper. M1 is the primary muscarinic subtype while α7 is the primary nAChR subtype that is responsible for cognition and memory and these two have been the major recent experimental targets for mAChR agonist strategy. SUMMARY: The last cholinergic receptor agonist to enter phase 3 trial was EVP-6124 (Enceniclin) but was withdrawn due to severe gastrointestinal adverse effects. We aim to present an overview of the efforts and achievements in targeting Muscarinic and Nicotinic acetylcholine receptor in the current review for development of better AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Agonistas Muscarínicos/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Regulação Alostérica/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Ensaios Clínicos como Assunto , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação Proteica
3.
J Cell Biochem ; 119(4): 3067-3080, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29052925

RESUMO

Fascioliasis is caused by the helminth parasites of genus Fasciola. Thioredoxin glutathione reductase (TGR) is an important enzyme in parasitic helminths and plays an indispensable role in its redox biology. In the present study, we conducted a structure-based virtual screening of natural compounds against the Fasciola gigantica TGR (FgTGR). The compounds were docked against FgTGR in four sequential docking modes. The screened ligands were further assessed for Lipinski and ADMET prediction so as to evaluate drug proficiency and likeness property. After refinement, three potential inhibitors were identified that were subjected to 50 ns molecular dynamics simulation and free energy binding analyses to evaluate the dynamics of protein-ligand interaction and the stability of the complexes. Key residues involved in the interaction of the selected ligands were also determined. The results suggested that three top hits had a negative binding energy greater than GSSG (-91.479 KJ · mol-1 ), having -152.657, -141.219, and -92.931 kJ · mol-1 for compounds with IDs ZINC85878789, ZINC85879991, and ZINC36369921, respectively. Further analysis showed that the compound ZINC85878789 and ZINC85879991 displayed substantial pharmacological and structural properties to be a drug candidate. Thus, the present study might prove useful for the future design of new derivatives with higher potency and specificity.


Assuntos
Antiplatelmínticos/química , Inibidores Enzimáticos/química , Fasciola/enzimologia , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Animais , Antiplatelmínticos/farmacologia , Sítios de Ligação , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Fasciola/efeitos dos fármacos , Proteínas de Helminto/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Análise de Componente Principal , Multimerização Proteica , Homologia Estrutural de Proteína
4.
J Biomol Struct Dyn ; 36(8): 2147-2162, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28627969

RESUMO

Fasciola gigantica is the causative organism of fascioliasis and is responsible for major economic losses in livestock production globally. F. gigantica thioredoxin1 (FgTrx1) is an important redox-active enzyme involved in maintaining the redox homeostasis in the cell. To identify a potential anti-fasciolid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,740) against the FgTrx1 structure. The ligands were docked against FgTrx1 and 309 ligands were found to have better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 30 compounds were found to fit well for re-docking studies. After refinement by molecular docking and drug-likeness analysis, three potential inhibitors (ZINC15970091, ZINC9312362, and ZINC9312661) were identified. These three ligands were further subjected to molecular dynamics simulation (MDS) to compare the dynamics and stability of the protein structure after binding of the ligands. The binding free energy analyses were calculated to determine the intermolecular interactions. The results suggested that the two compounds had a binding free energy of -82.237, and -109.52 kJ.mol-1 for compounds with IDs ZINC9312362 and ZINC9312661, respectively. These predicted compounds displayed considerable pharmacological and structural properties to be drug candidates. We concluded that these two compounds could be potential drug candidates to fight against F. gigantica parasites.


Assuntos
Produtos Biológicos/química , Proteínas de Helminto/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tiorredoxinas/química , Sequência de Aminoácidos , Animais , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fasciola/genética , Fasciola/metabolismo , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/metabolismo , Ligantes , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Termodinâmica , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo
5.
J Biomol Struct Dyn ; 36(8): 2045-2057, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28605994

RESUMO

Mycobacterium tuberculosis is the etiological agent of tuberculosis in humans and is responsible for more than two million deaths annually. M. tuberculosis isocitrate lyase (MtbICL) catalyzes the first step in the glyoxylate cycle, plays a pivotal role in the persistence of M. tuberculosis, which acts as a potential target for an anti-tubercular drug. To identify the potential anti-tuberculosis compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,748) against the MtbICL structure. The ligands were docked against MtbICL in three sequential docking modes that resulted in 340 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 27 compounds were found to fit well with re-docking studies. After refinement by molecular docking and drug-likeness analyses, three potential inhibitors (ZINC1306071, ZINC2111081, and ZINC2134917) were identified. These three ligands and the reference compounds were further subjected to molecular dynamics simulation and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the MtbICL and bound complexes. The binding free energy analyses were calculated to validate and capture the intermolecular interactions. The results suggested that the three compounds had a negative binding energy with -96.462, -143.549, and -122.526 kJ mol-1 for compounds with IDs ZINC1306071, ZINC2111081, and ZINC2134917, respectively. These lead compounds displayed substantial pharmacological and structural properties to be drug candidates. We concluded that ZINC2111081 has a great potential to inhibit MtbICL and would add to the drug discovery process against tuberculosis.


Assuntos
Proteínas de Bactérias/química , Produtos Biológicos/química , Inibidores Enzimáticos/química , Isocitrato Liase/química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Isocitrato Liase/antagonistas & inibidores , Isocitrato Liase/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
6.
J Biomol Struct Dyn ; 36(13): 3541-3556, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29029597

RESUMO

Opisthorchis felineus is the etiological agent of opisthorchiasis in humans. O. felineus cytochrome P450 (OfCYP450) is an important enzyme in the parasite xenobiotic metabolism. To identify the potential anti-opisthorchid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,65,869) against the OfCYP450. The ligands were screened against OfCYP450 in four sequential docking modes that resulted in 361 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 10 compounds were found to fit well with re-docking studies. After refinement by docking and drug-likeness analyses, four potential inhibitors (ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789) were identified. These ligands with reference compounds (itraconazole and fluconazole) were further subjected to molecular dynamics simulation (MDS) and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the OfCYP450 and bound complexes. The binding energy analyses were also calculated. The results suggested that the compounds had a negative binding energy with -259.41, -110.09, -188.25, -163.30, -202.10, and -158.79 kJ mol-1 for itraconazole, fluconazole, and compounds with IDs ZINC2358298, ZINC8790946, ZINC70707116, and ZINC85878789, respectively. These lead compounds displayed significant pharmacological and structural properties to be drug candidates. On the basis of MDS results and binding energy analyses, we concluded that ZINC8790946, ZINC70707116, and ZINC85878789 have excellent potential to inhibit OfCYP450.


Assuntos
Anti-Helmínticos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Opistorquíase/tratamento farmacológico , Opisthorchis/efeitos dos fármacos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Fluconazol/farmacologia , Humanos , Itraconazol/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Opistorquíase/parasitologia , Opisthorchis/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA