Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Struct Funct ; 225(4): 1293-1312, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32303844

RESUMO

The cortico-basal ganglia-thalamo-cortical feedback loops that consist of distinct white matter pathways are important for understanding in vivo imaging studies of functional and anatomical connectivity, and for localizing subthalamic white matter structures in surgical approaches for movement disorders, such as Parkinson's disease. Connectomic analysis in animals has identified fiber connections between the basal ganglia and thalamus, which pass through the fields of Forel, where other fiber pathways related to motor, sensory, and cognitive functions co-exist. We now report these pathways in the human brain on ex vivo mesoscopic (250 µm) diffusion tensor imaging and on tractography. The locations of the tracts were identified relative to the adjacent gray matter structures, such as the internal and external segments of the globus pallidus; the zona incerta; the subthalamic nucleus; the substantia nigra pars reticulata and compacta; and the thalamus. The connectome atlas of the human subthalamic region may serve as a resource for imaging studies and for neurosurgical planning.


Assuntos
Imagem de Tensor de Difusão , Núcleo Subtalâmico/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Gânglios da Base/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Vias Neurais/anatomia & histologia , Tálamo/anatomia & histologia
2.
ACS Nano ; 8(3): 2134-47, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24499315

RESUMO

Treatment of brain injury following circulatory arrest is a challenging health issue with no viable therapeutic options. Based on studies in a clinically relevant large animal (canine) model of hypothermic circulatory arrest (HCA)-induced brain injury, neuroinflammation and excitotoxicity have been identified as key players in mediating the brain injury after HCA. Therapy with large doses of valproic acid (VPA) showed some neuroprotection but was associated with adverse side effects. For the first time in a large animal model, we explored whether systemically administered polyamidoamine (PAMAM) dendrimers could be effective in reaching target cells in the brain and deliver therapeutics. We showed that, upon systemic administration, hydroxyl-terminated PAMAM dendrimers are taken up in the brain of injured animals and selectively localize in the injured neurons and microglia in the brain. The biodistribution in other major organs was similar to that seen in small animal models. We studied systemic dendrimer-drug combination therapy with two clinically approved drugs, N-acetyl cysteine (NAC) (attenuating neuroinflammation) and valproic acid (attenuating excitotoxicity), building on positive outcomes in a rabbit model of perinatal brain injury. We prepared and characterized dendrimer-NAC (D-NAC) and dendrimer-VPA (D-VPA) conjugates in multigram quantities. A glutathione-sensitive linker to enable for fast intracellular release. In preliminary efficacy studies, combination therapy with D-NAC and D-VPA showed promise in this large animal model, producing 24 h neurological deficit score improvements comparable to high dose combination therapy with VPA and NAC, or free VPA, but at one-tenth the dose, while significantly reducing the adverse side effects. Since adverse side effects of drugs are exaggerated in HCA, the reduced side effects with dendrimer conjugates and suggestions of neuroprotection offer promise for these nanoscale drug delivery systems.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Dendrímeros/metabolismo , Portadores de Fármacos/metabolismo , Acetilcisteína/efeitos adversos , Acetilcisteína/química , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Transporte Biológico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Dendrímeros/química , Modelos Animais de Doenças , Cães , Portadores de Fármacos/química , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Nanomedicina , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Coelhos , Resultado do Tratamento , Ácido Valproico/efeitos adversos , Ácido Valproico/química , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
3.
Neuropsychopharmacology ; 37(1): 261-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21937983

RESUMO

Over the past three decades, significant progress has been made in understanding the neurobiology of Alzheimer's disease. In recent years, the first attempts to implement novel mechanism-based treatments brought rather disappointing results, with low, if any, drug efficacy and significant side effects. A discrepancy between our expectations based on preclinical models and the results of clinical trials calls for a revision of our theoretical views and questions every stage of translation-from how we model the disease to how we run clinical trials. In the following sections, we will use some specific examples of the therapeutics from acetylcholinesterase inhibitors to recent anti-Aß immunization and γ-secretase inhibition to discuss whether preclinical studies could predict the limitations in efficacy and side effects that we were so disappointed to observe in recent clinical trials. We discuss ways to improve both the predictive validity of mouse models and the translation of knowledge between preclinical and clinical stages of drug development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Pesquisa Translacional Biomédica/tendências , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Humanos
4.
Ann Thorac Surg ; 81(6): 2235-41; discussion 2241-2, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731160

RESUMO

BACKGROUND: The anticonvulsant valproic acid (sodium valproate, Depacon) acts as a neuroprotectant in rodents, but has never been tested in larger animals. We used valproate in our canine model of hypothermic circulatory arrest to evaluate its neuroprotective benefit in complex cardiac surgical cases. METHODS: Thirteen dogs pretreated with valproate before 2 hours of hypothermic circulatory arrest survived for 24 hours (n = 7) or 72 hours (n = 6). Thirteen control animals (placebo only) also survived for 24 hours (n = 7) or 72 hours (n = 6) after hypothermic circulatory arrest. Blinded clinical neurologic evaluation was performed daily until sacrifice using the Pittsburgh Canine Neurologic Scoring System. Brains were harvested for blinded histopathologic analysis by a neuropathologist to determine the extent of apoptosis and necrosis in 11 brain regions (Total Brain Cell Death Score: 0 = normal, 99 = extensive neuronal death in all regions). Quantification of N-acetyl-aspartate, an established marker for brain injury, was performed with mass spectrometry. RESULTS: Valproate dogs scored significantly better than control animals on clinical neurologic evaluation. Histopathologic examination revealed that valproate animals demonstrated less neuronal damage (by Total Brain Cell Death Score) than control animals at both 24 hours (16.4 versus 11.4; p = 0.03) and 72 hours (21.7 versus 17.7; p = 0.07). At 72 hours, the entorhinal cortex, an area involved with learning and memory, was significantly protected in valproate dogs (p < 0.05). Furthermore, the cortex, hippocampus, and cerebellum demonstrated preservation of near-normal N-acetyl-aspartate levels after valproate pretreatment. CONCLUSIONS: These data demonstrate clinical, histologic, and biochemical improvements in dogs pretreated with valproate before hypothermic circulatory arrest. This commonly used drug may offer a promising new approach to neuroprotection during cardiac surgery.


Assuntos
Dano Encefálico Crônico/prevenção & controle , Parada Circulatória Induzida por Hipotermia Profunda/efeitos adversos , Hipóxia-Isquemia Encefálica/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Ácido Valproico/uso terapêutico , Animais , Apoptose , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Comportamento Animal , Biomarcadores , Encéfalo/enzimologia , Encéfalo/patologia , Química Encefálica/efeitos dos fármacos , Dano Encefálico Crônico/etiologia , Ponte Cardiopulmonar/efeitos adversos , Transtornos da Consciência/etiologia , Transtornos da Consciência/prevenção & controle , Doenças dos Nervos Cranianos/etiologia , Doenças dos Nervos Cranianos/prevenção & controle , Cães , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Necrose , Fármacos Neuroprotetores/administração & dosagem , Transtornos de Sensação/etiologia , Transtornos de Sensação/prevenção & controle , Método Simples-Cego , Ácido Valproico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA