Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 102(1): 120-127.e4, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30765165

RESUMO

Throughout life, individuals learn to predict a punishment via its association with sensory stimuli. This process ultimately prompts goal-directed actions to prevent the danger, a behavior defined as avoidance. Neurons in the lateral habenula (LHb) respond to aversive events as well as to environmental cues predicting them, supporting LHb contribution to cue-punishment association. However, whether synaptic adaptations at discrete habenular circuits underlie such associative learning to instruct avoidance remains elusive. Here, we find that, in mice, contingent association of an auditory cue (tone) with a punishment (foot shock) progressively causes cue-driven LHb neuronal excitation during avoidance learning. This process is concomitant with the strengthening of LHb AMPA receptor-mediated neurotransmission. Such a phenomenon occludes long-term potentiation and occurs specifically at hypothalamus-to-habenula synapses. Silencing hypothalamic-to-habenulainputs or optically inactivating postsynaptic AMPA receptors within the LHb disrupts avoidance learning. Altogether, synaptic strengthening at a discrete habenular circuit transforms neutral stimuli into salient punishment-predictive cues to guide avoidance.


Assuntos
Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Habenula/fisiologia , Hipotálamo/fisiologia , Potenciação de Longa Duração/fisiologia , Punição , Sinapses/fisiologia , Animais , Aprendizagem por Associação/fisiologia , Masculino , Camundongos , Técnicas de Patch-Clamp , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/fisiologia
2.
Neuron ; 98(4): 801-816.e7, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29706583

RESUMO

Monoaminergic modulation of cortical and thalamic inputs to the dorsal striatum (DS) is crucial for reward-based learning and action control. While dopamine has been extensively investigated in this context, the synaptic effects of serotonin (5-HT) have been largely unexplored. Here, we investigated how serotonergic signaling affects associative plasticity at glutamatergic synapses on the striatal projection neurons of the direct pathway (dSPNs). Combining chemogenetic and optogenetic approaches reveals that impeding serotonergic signaling preferentially gates spike-timing-dependent long-term depression (t-LTD) at thalamostriatal synapses. This t-LTD requires dampened activity of the 5-HT4 receptor subtype, which we demonstrate controls dendritic Ca2+ signals by regulating BK channel activity, and which preferentially localizes at the dendritic shaft. The synaptic effects of 5-HT signaling at thalamostriatal inputs provide insights into how changes in serotonergic levels associated with behavioral states or pathology affect striatal-dependent processes.


Assuntos
Corpo Estriado/metabolismo , Plasticidade Neuronal/genética , Receptores 5-HT4 de Serotonina/genética , Serotonina/metabolismo , Tálamo/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Indóis/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Depressão Sináptica de Longo Prazo , Camundongos , Camundongos Transgênicos , Vias Neurais , Plasticidade Neuronal/efeitos dos fármacos , Optogenética , Piperidinas/farmacologia , Propano/análogos & derivados , Propano/farmacologia , Antagonistas do Receptor 5-HT4 de Serotonina/farmacologia , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Tálamo/citologia , Tálamo/efeitos dos fármacos
3.
ACS Appl Mater Interfaces ; 10(20): 16952-16963, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29669213

RESUMO

One area where nanomedicine may offer superior performances and efficacy compared to current strategies is in the diagnosis and treatment of central nervous system (CNS) diseases. However, the application of nanomaterials in such complex arenas is still in its infancy and an optimal vector for the therapy of CNS diseases has not been identified. Graphitic carbon nano-onions (CNOs) represent a class of carbon nanomaterials that shows promising potential for biomedical purposes. To probe the possible applications of graphitic CNOs as a platform for therapeutic and diagnostic interventions on CNS diseases, fluorescently labeled CNOs were stereotaxically injected in vivo in mice hippocampus. Their diffusion within brain tissues and their cellular localization were analyzed ex vivo by confocal microscopy, electron microscopy, and correlative light-electron microscopy techniques. The subsequent fluorescent staining of hippocampal cells populations indicates they efficiently internalize the nanomaterial. Furthermore, the inflammatory potential of the CNOs injection was found comparable to sterile vehicle infusion, and it did not result in manifest neurophysiological and behavioral alterations of hippocampal-mediated functions. These results clearly demonstrate that CNOs can interface effectively with several cell types, which encourages further their development as possible brain disease-targeted diagnostics or therapeutics nanocarriers.


Assuntos
Hipocampo , Animais , Carbono , Camundongos , Nanomedicina , Nanoestruturas , Cebolas
4.
Elife ; 62017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28871962

RESUMO

A sudden aversive event produces escape behaviors, an innate response essential for survival in virtually all-animal species. Nuclei including the lateral habenula (LHb), the lateral hypothalamus (LH), and the midbrain are not only reciprocally connected, but also respond to negative events contributing to goal-directed behaviors. However, whether aversion encoding requires these neural circuits to ultimately prompt escape behaviors remains unclear. We observe that aversive stimuli, including foot-shocks, excite LHb neurons and promote escape behaviors in mice. The foot-shock-driven excitation within the LHb requires glutamatergic signaling from the LH, but not from the midbrain. This hypothalamic excitatory projection predominates over LHb neurons monosynaptically innervating aversion-encoding midbrain GABA cells. Finally, the selective chemogenetic silencing of the LH-to-LHb pathway impairs aversion-driven escape behaviors. These findings unveil a habenular neurocircuitry devoted to encode external threats and the consequent escape; a process that, if disrupted, may compromise the animal's survival.


Assuntos
Comportamento Animal , Reação de Fuga , Habenula/fisiologia , Hipotálamo/fisiologia , Vias Neurais , Potenciais de Ação , Animais , Eletroencefalografia , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA