Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 167: 115506, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716120

RESUMO

BACKGROUND: Candida albicans is the most prevalent fungal pathogen, affecting over 75% of women who have experienced candidal vaginitis. Given the identification of drug-resistant C. albicans strains, there is an urgent need to develop therapeutic methods for treating vaginal Candida infection. Polysaccharide is the major bioactive component of Cordyceps militaris, known to modulate immune responses and alleviate inflammation. Sesame oil is known with anti-microbial and anti-inflammatory activities. METHODS: C. militaris polysaccharide was prepared and formulated with sesame oil to prepare emulsion and nanoemulsion, which are ideal mucosal delivery systems for both hydrophobic and hydrophilic compounds concurrently. The physical property and storage stability of these formulations were illustrated, and their effects on ameliorating vaginitis were investigated in a murine model of vaginal Candida infection. RESULTS: C. militaris polysaccharide-containing nanoemulsion showed smaller particle size, lower polydispersity index, higher zeta-potential and better stability than emulsion. Intravaginal administration of C. militaris polysaccharide-containing nanoemulsion significantly attenuated C. militaris colonization and vaginitis. Notably, these formulations exerted distinct effects on modulating cell infiltration and splenic cytokine production. Moreover, different profile of vaginal microflora was observed among the treatment groups, revealing the potential action mechanisms of these formulations to mitigate vaginal Candida infection. CONCLUSION: C. militaris polysaccharide- and sesame oil-containing nanoemulsion is potential to be developed as intravaginal therapeutic strategy for C. albicans-induced vaginitis.

2.
Heart Rhythm ; 17(7): 1167-1175, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32068184

RESUMO

BACKGROUND: Subcutaneous nerve stimulation (ScNS) remodels the stellate ganglion and reduces stellate ganglion nerve activity (SGNA) in dogs. Acute myocardial infarction (MI) increases SGNA through nerve sprouting. OBJECTIVE: The purpose of this study was to test the hypothesis that ScNS remodels the stellate ganglion and reduces SGNA in ambulatory dogs with acute MI. METHODS: In the experimental group, a radio transmitter was implanted during the first sterile surgery to record nerve activity and an electrocardiogram, followed by a second sterile surgery to create MI. Dogs then underwent ScNS for 2 months. The average SGNA (aSGNA) was compared with that in a historical control group (n = 9), with acute MI monitored for 2 months without ScNS. RESULTS: In the experimental group, the baseline aSGNA and heart rate were 4.08±0.35 µV and 98±12 beats/min, respectively. They increased within 1 week after MI to 6.91±1.91 µV (P=.007) and 107±10 beats/min (P=.028), respectively. ScNS reduced aSGNA to 3.46±0.44 µV (P<.039) and 2.14±0.50 µV (P<.001) at 4 and 8 weeks, respectively, after MI. In comparison, aSGNA at 4 and 8 weeks in dogs with MI but no ScNS was 8.26±6.31 µV (P=.005) and 10.82±7.86 µV (P=0002), respectively. Immunostaining showed confluent areas of remodeling in bilateral stellate ganglia and a high percentage of tyrosine hydroxylase-negative ganglion cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling was positive in 26.61%±11.54% of ganglion cells in the left stellate ganglion and 15.94%±3.62% of ganglion cells in the right stellate ganglion. CONCLUSION: ScNS remodels the stellate ganglion, reduces SGNA, and suppresses cardiac nerve sprouting after acute MI.


Assuntos
Frequência Cardíaca/fisiologia , Infarto do Miocárdio/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Modelos Animais de Doenças , Cães , Eletrocardiografia , Monitorização Fisiológica/métodos , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia
3.
Heart Rhythm ; 15(8): 1242-1251, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29654853

RESUMO

BACKGROUND: Stellate ganglion nerve activity (SGNA) precedes paroxysmal atrial tachyarrhythmia (PAT) episodes in dogs with intermittent rapid left atrial (LA) pacing. The left dorsal branch of the thoracic nerve (LDTN) contains sympathetic nerves originating from the stellate ganglia. OBJECTIVE: The purpose of this study was to test the hypothesis that high-frequency electrical stimulation of the LDTN can cause stellate ganglia damage and suppress PATs. METHODS: We performed long-term LDTN stimulation in 6 dogs with and 2 dogs without intermittent rapid LA pacing while monitoring SGNA. RESULTS: LDTN stimulation reduced average SGNA from 4.36 µV (95% confidence interval [CI] 4.10-4.62 µV) at baseline to 3.22 µV (95% CI 3.04-3.40 µV) after 2 weeks (P = .028) and completely suppressed all PAT episodes in all dogs studied. Tyrosine hydroxylase staining showed large damaged regions in both stellate ganglia, with increased percentages of tyrosine hydroxylase-negative cells. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that 23.36% (95% CI 18.74%-27.98%) of ganglion cells in the left stellate ganglia and 11.15% (95% CI 9.34%-12.96%) ganglion cells in the right stellate ganglia were positive, indicating extensive cell death. A reduction of both SGNA and heart rate was also observed in dogs with LDTN stimulation but without rapid LA pacing. Histological studies in the 2 dogs without intermittent rapid LA pacing confirmed the presence of extensive stellate ganglia damage, along with a high percentage of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. CONCLUSION: LDTN stimulation damages both left and right stellate ganglia, reduces left SGNA, and is antiarrhythmic in this canine model of PAT.


Assuntos
Fibrilação Atrial/terapia , Terapia por Estimulação Elétrica/métodos , Átrios do Coração/fisiopatologia , Gânglio Estrelado/fisiopatologia , Taquicardia Paroxística/terapia , Nervos Torácicos/fisiopatologia , Animais , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Cães , Eletrocardiografia , Sistema Nervoso Simpático/fisiopatologia , Taquicardia Paroxística/fisiopatologia
4.
Heart Rhythm ; 15(3): 451-459, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29081397

RESUMO

BACKGROUND: Reducing sympathetic efferent outflow from the stellate ganglia (SG) may be antiarrhythmic. OBJECTIVE: The purpose of this study was to test the hypothesis that chronic thoracic subcutaneous nerve stimulation (ScNS) could reduce SG nerve activity (SGNA) and control paroxysmal atrial tachycardia (PAT). METHODS: Thoracic ScNS was performed in 8 dogs while SGNA, vagal nerve activity (VNA), and subcutaneous nerve activity (ScNA) were monitored. An additional 3 dogs were used for sham stimulation as controls. RESULTS: Xinshu ScNS and left lateral thoracic nerve ScNS reduced heart rate (HR). Xinshu ScNS at 3.5 mA for 2 weeks reduced mean average SGNA from 5.32 µV (95% confidence interval [CI] 3.89-6.75) at baseline to 3.24 µV (95% CI 2.16-4.31; P = .015) and mean HR from 89 bpm (95% CI 80-98) at baseline to 83 bpm (95% CI 76-90; P = .007). Bilateral SG showed regions of decreased tyrosine hydroxylase staining with increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive nuclei in 18.47% (95% CI 9.68-46.62) of all ganglion cells, indicating cell death. Spontaneous PAT episodes were reduced from 9.83 per day (95% CI 5.77-13.89) in controls to 3.00 per day (95% CI 0.11-5.89) after ScNS (P = .027). Left lateral thoracic nerve ScNS also led to significant bilateral SG neuronal death and significantly reduced average SGNA and HR in dogs. CONCLUSION: ScNS at 2 different sites in the thorax led to SG cell death, reduced SGNA, and suppressed PAT in ambulatory dogs.


Assuntos
Fibrilação Atrial/terapia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Cães , Eletrocardiografia , Seguimentos , Monitorização Fisiológica , Gânglio Estrelado/fisiopatologia , Fatores de Tempo
5.
Heart Rhythm ; 12(7): 1619-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25778433

RESUMO

BACKGROUND: We recently reported that subcutaneous nerve activity (SCNA) can be used to estimate sympathetic tone. OBJECTIVE: The purpose of this study was to test the hypothesis that left thoracic SCNA is more accurate than heart rate variability (HRV) in estimating cardiac sympathetic tone in ambulatory dogs with myocardial infarction (MI). METHODS: We used an implanted radiotransmitter to study left stellate ganglion nerve activity (SGNA), vagal nerve activity (VNA), and thoracic SCNA in 9 dogs at baseline and up to 8 weeks after MI. HRV was determined based on time-domain, frequency-domain, and nonlinear analyses. RESULTS: The correlation coefficients between integrated SGNA and SCNA averaged 0.74 (95% confidence interval [CI] 0.41-1.06) at baseline and 0.82 (95% CI, 0.63-1.01) after MI (P <.05 for both). The absolute values of the correlation coefficients were significantly larger than that between SGNA and HRV analysis based on time-domain, frequency-domain, and nonlinear analyses, respectively, at baseline (P <.05 for all) and after MI (P <.05 for all). There was a clear increment of SGNA and SCNA at 2, 4, 6, and 8 weeks after MI, whereas HRV parameters showed no significant changes. Significant circadian variations were noted in SCNA, SGNA, and all HRV parameters at baseline and after MI, respectively. Atrial tachycardia (AT) episodes were invariably preceded by SCNA and SGNA, which were progressively increased from 120th, 90th, 60th, to 30th seconds before AT onset. No such changes of HRV parameters were observed before AT onset. CONCLUSION: SCNA is more accurate than HRV in estimating cardiac sympathetic tone in ambulatory dogs with MI.


Assuntos
Frequência Cardíaca , Infarto do Miocárdio/complicações , Condução Nervosa , Gânglio Estrelado/fisiopatologia , Taquicardia/diagnóstico , Nervo Vago/fisiopatologia , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Precisão da Medição Dimensional , Modelos Animais de Doenças , Cães , Técnicas Eletrofisiológicas Cardíacas/métodos , Modelos Cardiovasculares , Infarto do Miocárdio/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Estatística como Assunto , Taquicardia/etiologia , Taquicardia/fisiopatologia , Nervos Torácicos/fisiopatologia
6.
PLoS One ; 8(9): e75628, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098708

RESUMO

Methionine adenosyltransferase (MAT) is the cellular enzyme that catalyzes the synthesis of S-adenosylmethionine (SAM), the principal biological methyl donor and a key regulator of hepatocyte proliferation, death and differentiation. Two genes, MAT1A and MAT2A, encode 2 distinct catalytic MAT isoforms. A third gene, MAT2B, encodes a MAT2A regulatory subunit. In hepatocellular carcinoma (HCC), MAT1A downregulation and MAT2A upregulation occur, known as the MAT1A:MAT2A switch. The switch is accompanied with an increasing expression of MAT2B, which results in decreased SAM levels and facilitates cancer cell growth. Berberine, an isoquinoline alkaloid isolated from many medicinal herbs such as Coptis chinensis, has a wide range of pharmacological effects including anti-cancer effects. Because drug-induced microRNAs have recently emerged as key regulators in guiding their pharmacological effects, we examined whether microRNA expression is differentially altered by berberine treatment in HCC. In this study, we used microRNA microarrays to find that the expression level of miR-21-3p (previously named miR-21*) increased after berberine treatment in the HepG2 human hepatoma cell line. To predict the putative targets of miR-21-3p, we integrated the gene expression profiles of HepG2 cells after berberine treatment by comparing with a gene list generated from sequence-based microRNA target prediction software. We then confirmed these predictions through transfection of microRNA mimics and a 3' UTR reporter assay. Our findings provide the first evidence that miR-21-3p directly reduces the expression of MAT2A and MAT2B by targeting their 3' UTRs. In addition, an overexpression of miR-21-3p increased intracellular SAM contents, which have been proven to be a growth disadvantage for hepatoma cells. The overexpression of miR-21-3p suppresses growth and induces apoptosis in HepG2 cells. Overall, our results demonstrate that miR-21-3p functions as a tumor suppressor by directly targeting both MAT2A and MAT2B, indicating its therapeutic potential in HCC.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/fisiopatologia , Metionina Adenosiltransferase/metabolismo , MicroRNAs/farmacologia , Berberina/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Primers do DNA/genética , Citometria de Fluxo , Células HEK293 , Humanos , Luciferases , MicroRNAs/genética , MicroRNAs/metabolismo , Análise em Microsséries , Mutagênese , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA