Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38198273

RESUMO

Social interaction enables the smooth progression of our daily lives. Mounting evidence from recent hyperscanning neuroimaging studies indicates that key components of social behavior can be evaluated using inter-brain oscillations and connectivity. However, mapping out inter-brain networks and developing neurocognitive theories that explain how humans co-create and share information during social interaction remains challenging. In this study, we developed a jigsaw puzzle-solving game with hyperscanning electroencephalography (EEG) signals recorded to investigate inter-brain activities during social interactions involving cooperation and competition. Participants were recruited and paired into dyads to participate in the multiplayer jigsaw puzzle game with 32-channel EEG signals recorded. The corresponding event-related potentials (ERPs), brain oscillations, and inter-brain functional connectivity were analyzed. The results showed different ERP morphologies of P3 patterns in competitive and cooperative contexts, and brain oscillations in the low-frequency band may be an indicator of social cognitive activities. Furthermore, increased inter-brain functional connectivity in the delta, theta, alpha, and beta frequency bands was observed in the competition mode compared to the cooperation mode. By presenting comparable and valid hyperscanning EEG results alongside those of previous studies using traditional paradigms, this study demonstrates the potential of utilizing hyperscanning techniques in real-life game-playing scenarios to quantitatively assess social cognitive interactions involving cooperation and competition. Our approach offers a promising platform with potential applications in the flexible assessment of psychiatric disorders related to social functioning.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Potenciais Evocados , Tálamo , Cognição , Mapeamento Encefálico/métodos
2.
Neuroimage ; 202: 116042, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344485

RESUMO

The analysis of functional magnetic resonance imaging (fMRI) data is challenging when subjects are under exposure to natural sensory stimulation. In this study, a two-stage approach was developed to enable the identification of connectivity networks involved in the processing of information in the brain under natural sensory stimulation. In the first stage, the degree of concordance between the results of inter-subject and intra-subject correlation analyses is assessed statistically. The microstructurally (i.e., cytoarchitectonically) defined brain areas are designated either as concordant in which the results of both correlation analyses are in agreement, or as discordant in which one analysis method shows a higher proportion of supra-threshold voxels than does the other. In the second stage, connectivity networks are identified using the time courses of supra-threshold voxels in brain areas contingent upon the classifications derived in the first stage. In an empirical study, fMRI data were collected from 40 young adults (19 males, average age 22.76 ±â€¯3.25), who underwent auditory stimulation involving sound clips of human voices and animal vocalizations under two operational conditions (i.e., eyes-closed and eyes-open). The operational conditions were designed to assess confounding effects due to auditory instructions or visual perception. The proposed two-stage analysis demonstrated that stress modulation (affective) and language networks in the limbic and cortical structures were respectively engaged during sound stimulation, and presented considerable variability among subjects. The network involved in regulating visuomotor control was sensitive to the eyes-open instruction, and presented only small variations among subjects. A high degree of concordance was observed between the two analyses in the primary auditory cortex which was highly sensitive to the pitch of sound clips. Our results have indicated that brain areas can be identified as concordant or discordant based on the two correlation analyses. This may further facilitate the search for connectivity networks involved in the processing of information under natural sensory stimulation.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Sistema Límbico/fisiologia , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
3.
J Tradit Complement Med ; 8(2): 289-295, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29736384

RESUMO

Under the concept of meridian channels that belongs to traditional Chinese medicine, BIOCERAMIC Resonance (BR) has already been applied to many clinical medical research projects with functions mimicking of traditional acupuncture. Forty-five patients were recruited with chronic sleep disorders; 36 patients were given, applied to the device with BIOCERAMIC material and sound rhythm on chest skin surface; 9 patients were included as controls. All study participants completed a sleep pattern and quality of life questionnaire (assessment on psychological and physical causes of sleep disturbances), which was repeated before, during and after treatment. Electroencephalograph (EEG) recordings were analyzed before, during and after treatment. Functional MRI (fMRI) was also used for demonstration of BR effect for another 8 candidates. During the first 3 days of treatment, sleep quality improved in all 36 patients especially to psychological reasons; in 91.7% (33/36) treatment was associated with an elevation in the beta spectrum of the EEG (at 15-27 Hz). The result of fMRI found corresponding cerebral and cerebellar areas of activation and deactivation. BIOCERAMIC Resonance can improve sleep disorder due to psychological causes, with transient alter brain wave activity and functional activation on specific locations of brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA