Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R69-R80, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184224

RESUMO

Hyperthermia stimulates ventilation (hyperthermia-induced hyperventilation). In exercising humans, once the core temperature reaches ∼37°C, minute ventilation (V̇e) increases linearly with rising core temperature, and the slope of the relation between V̇e and core temperature reflects the sensitivity of the response. We previously reported that sodium bicarbonate ingestion reduces V̇e during prolonged exercise in the heat without affecting the sensitivity of hyperthermia-induced hyperventilation. Here, we hypothesized that reductions in V̇e associated with sodium bicarbonate ingestion reflect elevation of the core temperature threshold for hyperthermia-induced hyperventilation. Thirteen healthy young males ingested sodium bicarbonate (0.3 g/kg body wt) (NaHCO3 trial) or sodium chloride (0.208 g/kg body wt) (NaCl trial), after which they performed a cycle exercise at 50% of peak oxygen uptake in the heat (35°C and 50% relative humidity) following a pre-cooling. The pre-cooling enabled detection of an esophageal temperature (Tes: an index of core temperature) threshold for hyperthermia-induced hyperventilation. The Tes thresholds for increases in V̇e were similar between the two trials (P = 0.514). The slopes relating V̇E to Tes also did not differ between trials (P = 0.131). However, V̇e was lower in the NaHCO3 than in the NaCl trial in the range of Tes = 36.8-38.4°C (P = 0.007, main effect of trial). These results suggest that sodium bicarbonate ingestion does not alter the core temperature threshold or sensitivity of hyperthermia-induced hyperventilation during prolonged exercise in the heat; instead, it downshifts the exercise hyperpnea.


Assuntos
Hipertermia Induzida , Bicarbonato de Sódio , Humanos , Masculino , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Hipertermia , Hiperventilação , Respiração , Cloreto de Sódio , Temperatura
2.
Physiol Rep ; 7(1): e13967, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30637992

RESUMO

We investigated whether heat-induced hyperventilation can be voluntarily prevented, and, if so, how this modulates respiratory mechanics and cerebral blood flow in resting heated humans. In two separate trials, 10 healthy men were passively heated using lower body hot-water immersion and a water-perfused garment covering their upper body (both 41°C) until esophageal temperature (Tes ) reached 39°C or volitional termination. In each trial, participants breathed normally (normal-breathing) or voluntarily controlled minute ventilation (VE ) at a level equivalent to that observed after 5 min of heating (controlled-breathing). Respiratory gases, middle cerebral artery blood velocity (MCAV), work of breathing, and end-expiratory and inspiratory lung volumes were measured. During normal-breathing, VE increased as Tes rose above 38.0 ± 0.3°C, whereas controlled-breathing diminished the increase in VE (VE at Tes  = 38.6°C: 25.6 ± 5.9 and 11.9 ± 1.3 L min-1 during normal- and controlled-breathing, respectively, P < 0.001). During normal-breathing, end-tidal CO2 pressure and MCAV decreased with rising Tes , but controlled-breathing diminished these reductions (at Tes  = 38.6°C, 24.7 ± 5.0 vs. 39.5 ± 2.8 mmHg; 44.9 ± 5.9 vs. 60.2 ± 6.3 cm sec-1 , both P < 0.001). The work of breathing correlated positively with changes in VE (P < 0.001) and was lower during controlled- than normal-breathing (16.1 ± 12.6 and 59.4 ± 49.5 J min-1 , respectively, at heating termination, P = 0.013). End-expiratory and inspiratory lung volumes did not differ between trials (P = 0.25 and 0.71, respectively). These results suggest that during passive heating at rest, heat-induced hyperventilation increases the work of breathing without affecting end-expiratory lung volume, and that voluntary control of breathing can nearly abolish this hyperventilation, thereby diminishing hypocapnia, cerebral hypoperfusion, and increased work of breathing.


Assuntos
Circulação Cerebrovascular , Hipertermia Induzida/efeitos adversos , Hiperventilação/fisiopatologia , Mecânica Respiratória , Adulto , Temperatura Corporal , Suspensão da Respiração , Humanos , Hiperventilação/etiologia , Masculino , Condicionamento Físico Humano/métodos , Trabalho Respiratório
3.
J Appl Physiol (1985) ; 124(1): 225-233, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970199

RESUMO

Elevating core temperature at rest causes increases in minute ventilation (V̇e), which lead to reductions in both arterial CO2 partial pressure (hypocapnia) and cerebral blood flow. We tested the hypothesis that in resting heated humans this hypocapnia diminishes the ventilatory sensitivity to rising core temperature but does not explain a large portion of the decrease in cerebral blood flow. Fourteen healthy men were passively heated using hot-water immersion (41°C) combined with a water-perfused suit, which caused esophageal temperature (Tes) to reach 39°C. During heating in two separate trials, end-tidal CO2 partial pressure decreased from the level before heating (39.4 ± 2.0 mmHg) to the end of heating (30.5 ± 6.3 mmHg) ( P = 0.005) in the Control trial. This decrease was prevented by breathing CO2-enriched air throughout the heating such that end-tidal CO2 partial pressure did not differ between the beginning (39.8 ± 1.5 mmHg) and end (40.9 ± 2.7 mmHg) of heating ( P = 1.00). The sensitivity to rising Tes (i.e., slope of the Tes - V̇E relation) did not differ between the Control and CO2-breathing trials (37.1 ± 43.1 vs. 16.5 ± 11.1 l·min-1·°C-1, P = 0.31). In both trials, middle cerebral artery blood velocity (MCAV) decreased early during heating (all P < 0.01), despite the absence of hyperventilation-induced hypocapnia. CO2 breathing increased MCAV relative to Control at the end of heating ( P = 0.005) and explained 36.6% of the heat-induced reduction in MCAV. These results indicate that during passive heating at rest ventilatory sensitivity to rising core temperature is not suppressed by hypocapnia and that most of the decrease in cerebral blood flow occurs independently of hypocapnia. NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The last may underlie central fatigue. We are the first to demonstrate that hyperthermia-induced hyperventilation is not suppressed by the resultant hypocapnia and that hypocapnia explains only 36% of cerebral hypoperfusion elicited by hyperthermia. These new findings advance our understanding of the mechanisms controlling ventilation and cerebral blood flow during heat stress, which may be useful for developing interventions aimed at preventing central fatigue during hyperthermia.


Assuntos
Temperatura Corporal , Circulação Cerebrovascular , Hiperventilação/fisiopatologia , Hipocapnia/fisiopatologia , Respiração , Adulto , Voluntários Saudáveis , Humanos , Hipertermia Induzida , Hiperventilação/complicações , Hipocapnia/etiologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA