Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biomed Pharmacother ; 166: 115437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37677966

RESUMO

Polyphenols have been widely used to treat various chronic skin diseases because they are beneficial in wound healing and show anti-inflammatory effects, however, the mechanism of action remains ambiguous. Previously, we reported the wound healing capability of tea polyphenols (TPP), the major functional component of tea, in vivo. The current study aimed to address the mechanisms of TPP in wound healing during different phases (inflammation, proliferation and remodeling). During the inflammation phase, TPP reduced the production of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) and inhibited infiltration of neutrophils; during the proliferation phase, TPP promoted the expression of growth factor VEGF-A, which can promote vascular endothelial cell division and induce angiogenesis; TPP improved the morphology of the wound and restored the ratio of type III/I collagens during the remodeling phase, as determined by Masson-trichrome staining and Sirius red staining assays. By tracking the changes in the wound area, TPP and recombinant human epidermal growth factor (rhEGF), rather than povidone-iodine (PVP-I), were able to promote wound healing. These results suggest that TPP plays a pivotal role in all the key stages of wound healing and displays distinct mechanisms from rhEGF, suggesting clinical significance for the future application of TPP as a natural wound healing agent.


Assuntos
Bioensaio , Relevância Clínica , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Colágeno Tipo I , Colágeno Tipo III , Fator de Crescimento Epidérmico , Inflamação , Chá
2.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175254

RESUMO

L-theanine (N-ethyl-γ-glutamine) is the main amino acid in tea leaves. It not only contributes to tea flavor but also possesses several health benefits. Compared with its sedative and calming activities, the immunomodulatory effects of L-theanine have received less attention. Clinical and epidemiological studies have shown that L-theanine reduces immunosuppression caused by strenuous exercise and prevents colds and influenza by improving immunity. Numerous cell and animal studies have proven that theanine plays an immunoregulatory role in inflammation, nerve damage, the intestinal tract, and tumors by regulating γδT lymphocyte function, glutathione (GSH) synthesis, and the secretion of cytokines and neurotransmitters. In addition, theanine can be used as an immunomodulator in animal production. This article reviews the research progress of L-theanine on immunoregulation and related mechanisms, as well as its application in poultry and animal husbandry. It is hoped that this work will be beneficial to future related research.


Assuntos
Citocinas , Glutamatos , Animais , Glutamatos/química , Imunidade , Chá/química
3.
Nutrients ; 14(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014921

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is one of the important incretins and possesses lots of physiological activities such as stimulating insulin secretion and maintaining glucose homeostasis. The pentacyclic triterpenoid saponins are the major active ingredients in tea (Camellia sinensis) seeds. This study aimed to investigate the effect of tea seed saponins on the GIP secretion and related mechanisms. Our data showed that the total tea seed saponins (TSS, 65 mg/kg BW) and theasaponin E1 (TSE1, 2-4 µM) could increase the GIP mRNA and protein levels in mice and STC-1 cells. Phlorizin, the inhibitor of Sodium/glucose cotransporter 1 (SGLT1), reversed the TSE1-induced increase in Ca2+ and GIP mRNA level. In addition, TSE1 upregulated the protein expression of Takeda G protein-coupled receptor 5 (TGR5), and TGR5 siRNA significantly decreased GIP expression in TSE1-treated STC-1 cells. Network pharmacology analysis revealed that six proteins and five signaling pathways were associated with SGLT1, TGR5 and GIP regulated by TSE1. Taken together, tea seed saponins could stimulate GIP expression via SGLT1 and TGR5, and were promising natural active ingredients for improving metabolism and related diseases.


Assuntos
Camellia sinensis , Polipeptídeo Inibidor Gástrico , Saponinas , Animais , Polipeptídeo Inibidor Gástrico/metabolismo , Glucose/metabolismo , Camundongos , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Saponinas/farmacologia , Sementes/metabolismo , Chá
4.
Plant Foods Hum Nutr ; 77(1): 105-111, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138518

RESUMO

Obesity is a worldwide epidemic and increases the risk of metabolic syndrome through chronic inflammation. Tea polyphenols (TP), the major functional component of tea, has shown preventive effects on obesity and obesity-related disease, but the underlying mechanism is complicated and remains obscure. The present study was aimed to elucidate the anti-inflammation effect of TP in high-fat-diet (HFD)-induced obese mice. Results showed that TP reduced obesity-induced inflammation and systemic lipopolysaccharides (LPS) level. The decrease of LPS level in circulation was followed by the downregulation of LPS specific receptor, toll-like receptor 4 (TLR4), and its co-receptor cluster of differentiation 14 (CD14) and adaptor protein differentiation factor 88 (MyD88) in hepatic and adipose tissues. That further inhibited the activation of nuclear factor κB (NF-κB). The serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1ß) and interleukin-6 (IL-6) were significantly decreased by TP in HFD-fed mice. TP also maintained the intestinal barrier integrity by increasing intestinal tight junction proteins and reversed gut dysbiosis in obese mice. These results suggested that TP attenuated obesity-induced inflammation by reducing systemic LPS level and inhibiting LPS-activated TLR4/NF-κB pathway.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Animais , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Interleucina-6 , Lipopolissacarídeos , Camundongos , Camundongos Obesos , NF-kappa B/metabolismo , Obesidade/tratamento farmacológico , Polifenóis/farmacologia , Chá , Receptor 4 Toll-Like/metabolismo
5.
Food Chem ; 383: 132463, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35183969

RESUMO

Two major green leaf volatiles (GLVs) in tea that contribute greatly to tea aroma, particularly the green odor, are (E)-2-hexenal and (Z)-3-hexenal. Until now, their formation and related mechanisms during tea manufacture have remained unclear. Our data showed that the contents of (E)-2-hexenal and (Z)-3-hexenal increased more than 1000-fold after live tea leaves were torn. Subsequently, a new (Z)-3:(E)-2-hexenal isomerase (CsHI) was identified in Camellia sinensis. CsHI irreversibly catalyzed the conversion of (Z)-3-hexenal to (E)-2-hexenal. Abiotic stresses including low temperature, dehydration, and mechanical wounding, did not influence the (E)-2-hexenal content in intact tea leaves during withering, but regulated the proportions of (Z)-3-hexenal and (E)-2-hexenal in torn leaves by modulating CsHI at the transcript level. For the first time, this work reveals the formation of (E)-2-hexenal during tea processing and suggests that CsHI may play a pivotal role in tea flavor development as well as in plant defense against abiotic stresses.


Assuntos
Camellia sinensis , Aldeídos , Isomerases , Folhas de Planta , Chá
6.
Food Funct ; 13(4): 2033-2043, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35106523

RESUMO

Black tea exhibits potential to improve hyperglycemia and insulin resistance, where theaflavins (TFs) are its characteristic components. The aim of this study was to explore the anti-diabetic mechanism of TFs. High-fat diet and streptozotocin-induced type 2 diabetes (T2D) mice were administered with TFs by gavage daily for 5 weeks. The biochemical analysis suggested that TFs possess potential anti-diabetic activity, which is comparable to that of metformin. RNA-sequencing analysis showed that TFs had a significant influence on the hepatic transcriptional profile of the T2D mice. The nine significantly enriched KEGG pathways were mainly associated with pancreatic secretion, digestion and metabolism of fat, protein and glycerolipid, and tight junctions. Quantitative real-time PCR and immunohistochemistry analysis verified that TFs improved pancreas function and intestine tight junction, with an increase in the expression of carboxyl ester lipase (Cel), chymotrypsinogen B (Ctrb1), pancreatic triglyceride lipase (Pnlip) and chymotrypsin-like elastase 3B (Cela3b) in the pancreas and cingulin and claudin-1 in the intestine. TFs improved mitochondrial biogenesis with the downregulation of peroxisome proliferator-activated receptor coactivator (PGC) 1α and 1ß in the liver, but had less effect on the muscle. This work revealed the comprehensive mechanism of TFs against T2D, suggesting that TFs are a potential natural agent for improving type 2 diabetes.


Assuntos
Antioxidantes/uso terapêutico , Biflavonoides/uso terapêutico , Catequina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Chá , Animais , Antioxidantes/farmacologia , Biflavonoides/farmacologia , Glicemia , Catequina/farmacologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina
7.
Nutrients ; 13(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34959930

RESUMO

Theaflavin-3,3'-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve ß cells regeneration in diabetic zebrafish at low concentrations (5 µg/mL and 10 µg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting ß cells. TF3 might be a promising agent for combating diabetes.


Assuntos
Biflavonoides/farmacologia , Catequina/análogos & derivados , Avaliação Pré-Clínica de Medicamentos/métodos , Hipoglicemiantes , Animais , Biflavonoides/isolamento & purificação , Catequina/isolamento & purificação , Catequina/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Glucoquinase/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Chá/química , Regulação para Cima/efeitos dos fármacos , Peixe-Zebra
8.
Molecules ; 26(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802884

RESUMO

Novel therapeutic strategies for ovarian cancer treatment are in critical need due to the chemoresistance and adverse side effects of platinum-based chemotherapy. Theasaponin E1 (TSE1) is an oleanane-type saponin from Camellia sinensis seeds. Its apoptosis-inducing, cell cycle arresting and antiangiogenesis activities against platinum-resistant ovarian cancer cells were elucidated in vitro and using the chicken chorioallantoic membrane (CAM) assay. The results showed that TSE1 had more potent cell growth inhibitory effects on ovarian cancer OVCAR-3 and A2780/CP70 cells than cisplatin and was lower in cytotoxicity to normal ovarian IOSE-364 cells. TSE1 significantly induced OVCAR-3 cell apoptosis via the intrinsic and extrinsic apoptotic pathways, slightly arresting cell cycle at the G2/M phase, and obviously inhibited OVCAR-3 cell migration and angiogenesis with reducing the protein secretion and expression of vascular endothelial growth factor (VEGF). Western bolt assay showed that Serine/threonine Kinase (Akt) signaling related proteins including Ataxia telangiectasia mutated kinase (ATM), Phosphatase and tensin homolog (PTEN), Akt, Mammalian target of rapamycin (mTOR), Ribosome S6 protein kinase (p70S6K) and e IF4E-binding protein 1(4E-BP1) were regulated, and Hypoxia inducible factor-1α (HIF-1α) protein expression was decreased by TSE1 in OVCAR-3 cells. Moreover, TSE1 treatment potently downregulated protein expression of the Notch ligands including Delta-like protein 4 (Dll4) and Jagged1, and reduced the protein level of the intracellular domain (NICD) of Notch1. Combination treatment of TSE1 with the Notch1 signaling inhibitor tert-butyl (2S)-2-[[(2S)-2-[[2-(3,5-difluorophenyl)acetyl]amino]propanoyl]amino]-2-phenylacetate (DAPT), or the Akt signaling inhibitor wortmannin, showed a stronger inhibition toward HIF-1α activation compared with single compound treatment. Taken together, TSE1 might be a potential candidate compound for improving platinum-resistant ovarian cancer treatment via Dll4/Jagged1-Notch1-Akt-HIF-1α axis.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Saponinas/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Camellia sinensis/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Membrana Corioalantoide/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Ácido Oleanólico/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sementes/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187244

RESUMO

Tea flower saponins (TFS) possess effective anticancer properties. The diversity and complexity of TFS increases the difficulty of their extraction and purification from tea flowers. Here, multiple methods including solvent extraction, microporous resin separation and preparative HPLC separation were used to obtain TFS with a yield of 0.34%. Furthermore, we revealed that TFS induced autophagy-as evidenced by an increase in MDC-positive cell populations and mCherry-LC3B-labeled autolysosomes and an upregulation of LC3II protein levels. 3-MA reversed the decrease in cell viability induced by TFS, showing that TFS induced autophagic cell death. TFS-induced autophagy was not dependent on the Akt/mTOR/p70S6K signaling pathway. TFS-induced autophagy in OVCAR-3 cells was accompanied by ERK pathway activation and reactive oxygen species (ROS) generation. This paper is the first report of TFS-mediated autophagy of ovarian cancer cells. These results provide new insights for future studies of the anti-cancer effects of TFS.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia , Camellia sinensis/química , Neoplasias Ovarianas/patologia , Saponinas/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Feminino , Flores/química , Humanos , Lisossomos/química , Proteínas Associadas aos Microtúbulos/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/química , Transdução de Sinais
10.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752095

RESUMO

Ovarian cancer is considered to be one of the most serious malignant tumors in women. Natural compounds have been considered as important sources in the search for new anti-cancer agents. Saponins are characteristic components of tea (Camellia sinensis) flower and have various biological activities, including anti-tumor effects. In this study, a high purity standardized saponin extract, namely Baiye No.1 tea flower saponin (BTFS), which contained Floratheasaponin A and Floratheasaponin D, were isolated from tea (Camellia sinensis cv. Baiye 1) flowers by macroporous resin and preparative liquid chromatography. Then, the component and purity were detected by UPLC-Q-TOF/MS/MS. This high purity BTFS inhibited the proliferation of A2780/CP70 cancer cells dose-dependently, which is evidenced by the inhibition of cell viability, reduction of colony formation ability, and suppression of PCNA protein expression. Further research found BTFS induced S phase cell cycle arrest by up-regulating p21 proteins expression and down-regulating Cyclin A2, CDK2, and Cdc25A protein expression. Furthermore, BTFS caused DNA damage and activated the ATM-Chk2 signaling pathway to block cell cycle progression. Moreover, BTFS trigged both extrinsic and intrinsic apoptosis-BTFS up-regulated the expression of death receptor pathway-related proteins DR5, Fas, and FADD and increased the ratio of pro-apoptotic/anti-apoptotic proteins of the Bcl-2 family. BTFS-induced apoptosis seems to be related to the AKT-MDM2-p53 signaling pathway. In summary, our results demonstrate that BTFS has the potential to be used as a nutraceutical for the prevention and treatment of ovarian cancer.


Assuntos
Apoptose/efeitos dos fármacos , Camellia sinensis/química , Extratos Vegetais/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Camellia sinensis/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina A2/genética , Ciclina A2/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Flores/química , Flores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Proteína Supressora de Tumor p53/metabolismo
11.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560563

RESUMO

Ovarian cancer is currently ranked at fifth in cancer deaths among women. Patients who have undergone cisplatin-based chemotherapy can experience adverse effects or become resistant to treatment, which is a major impediment for ovarian cancer treatment. Natural products from plants have drawn great attention in the fight against cancer recently. In this trial, purified tea (Camellia sinensis (L.) Kuntze) flower saponins (PTFSs), whose main components are Chakasaponin I and Chakasaponin IV, inhibited the growth and proliferation of ovarian cancer cell lines A2780/CP70 and OVCAR-3. Flow cytometry, caspase activity and Western blotting analysis suggested that such inhibitory effects of PTFSs on ovarian cancer cells were attributed to the induction of cell apoptosis through the intrinsic pathway rather than extrinsic pathway. The p53 protein was then confirmed to play an important role in PTFS-induced intrinsic apoptosis, and the levels of its downstream proteins such as caspase families, Bcl-2 families, Apaf-1 and PARP were regulated by PTFS treatment. In addition, the upregulation of p53 expression by PTFSs were at least partly induced by DNA damage through the ATM/Chk2 pathway. The results help us to understand the mechanisms underlying the effects of PTFSs on preventing and treating platinum-resistant ovarian cancer.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Flores/química , Saponinas/farmacologia , Chá/química , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Humanos , Espectrometria de Massas , Estrutura Molecular , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Saponinas/química , Transdução de Sinais/efeitos dos fármacos
12.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652500

RESUMO

Saponins in the Camellia sinensis seeds have a broad spectrum of biological properties and application potentials. However, up to now, no chromatographic methods have been developed to provide full fingerprinting and quality assurance for these saponins. This research aimed to develop a novel method to tentatively identify and quantify saponins in C. sinensis seeds by ultra-high-performance liquid chromatography coupled with photo-diode array detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS/MS), and compare it with the classic vanillin-sulfuric acid assay. Fifty-one triterpene saponins, including six potentially new compounds, were simultaneously detected by UPLC-PDA-MS/MS, and their chemical structures were speculated according to the retention behavior and fragmentation pattern. The total saponin content in the crude extract and the purified saponin fraction of C. sinensis seeds were quantified to be 19.57 ± 0.05% (wt %) and 41.68 ± 0.09% (wt %) respectively by UPLC-PDA at 210 nm, while the corresponding values were determined to be 43.11 ± 3.17% (wt %) and 56.60 ± 5.79% (wt %) respectively by the vanillin-sulfuric acid assay. The developed UPLC-PDA -MS/MS method could determine specified saponins, and is more reliable for quantifying the C. sinensis seed saponins than the classic spectrophotometric method. It is of great significance for the future investigations and applications of these saponins.


Assuntos
Camellia sinensis/química , Cromatografia Líquida de Alta Pressão/métodos , Saponinas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Triterpenos/análise , Estrutura Molecular , Extratos Vegetais/química , Saponinas/química , Sementes/química , Espectrometria de Massas em Tandem/métodos , Triterpenos/química
13.
Molecules ; 24(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769778

RESUMO

Theaflavin-3,3'-digallate (TF3) is a unique polyphenol in black tea. Epidemiological studies have proved that black tea consumption decreases the incidence rate of ovarian cancer. Our former research demonstrated that TF3 inhibited human ovarian cancer cells. Nevertheless, the roles of checkpoint kinase 2 (Chk2) and p27 kip1 (p27) in TF3-mediated inhibition of human ovarian cancer cells have not yet been investigated. In the current study, TF3 enhanced the phosphorylation of Chk2 to modulate the ratio of pro/anti-apoptotic Bcl-2 family proteins to initiate intrinsic apoptosis in a p53-independent manner and increased the expression of death receptors to activate extrinsic apoptosis in OVCAR-3 human ovarian carcinoma cells. In addition, TF3 up-regulated the expression of p27 to induce G0/G1 cell cycle arrest in OVCAR-3 cells. Our study indicated that Chk2 and p27 were vital anticancer targets of TF3 and provided more evidence that TF3 might be a potent agent to be applied as adjuvant treatment for ovarian cancer.


Assuntos
Biflavonoides/farmacologia , Carcinoma/tratamento farmacológico , Catequina/análogos & derivados , Quinase do Ponto de Checagem 2/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Neoplasias Ovarianas/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biflavonoides/química , Camellia sinensis/química , Carcinoma/genética , Carcinoma/patologia , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/efeitos dos fármacos , Chá/química , Proteína Supressora de Tumor p53/genética
14.
Molecules ; 24(2)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642065

RESUMO

Castanopsis lamontii is traditionally used to prevent inflammatory diseases such as periodontitis and pharyngitis by residents in southwest China. However, little scientific evidence has been found to support this. In this research, the antibacterial activities of Castanopsis lamontii water extract (CLE) were assessed using the micro-dilution method. The anti-inflammatory and antioxidant activities of CLE were investigated in RAW264.7 cells. Key bioactive compounds in CLE were also explored. Results showed that CLE was capable of inhibiting the periodontitis pathogen Porphyromonas gingivalis and the pharyngitis pathogen ß-hemolytic Streptococcus. It suppressed lipopolysaccharide-induced inflammation in RAW 264.7 cells via inactivating the TLR4/NF-κB pathway. Besides, it reduced oxidative stress-induced cell injury via scavenging reactive oxygen species. Chemical composition analysis revealed that CLE was rich in epicatechin and procyanidin B2. Further studies confirmed that epicatechin predominantly contributed to the antibacterial activities of CLE, while procyanidin B2 was mainly responsible for the anti-inflammatory activities of CLE. Both compounds contributed to the antioxidant activities of CLE. Acute oral toxicity tests proved that CLE was practically non-toxic. These results provide experimental evidences of the health-beneficial effects of CLE and may help promote the application of CLE in the food and health industries.


Assuntos
Fagaceae/química , Inflamação/etiologia , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Feminino , Inflamação/patologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
15.
J Agric Food Chem ; 67(19): 5361-5373, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30612424

RESUMO

During the past 20 years, many studies have focused on polyphenol compounds for their potential beneficial health effects. Flavonoids represent a large class of phenolic compounds found in fruits, vegetables, nuts, grains, cocoa, tea, and other beverages. Flavonoids have shown antioxidant and anti-inflammatory activities. Given the putative relationship between inflammation and insulin resistance, the consumption of flavonoids or flavonoid-rich foods has been suggested to reduce the risk of diabetes by targeting inflammatory signals. This is the first comprehensive review summarizing the current research progress on the inhibition of inflammation and alleviation of insulin resistance by flavonoids as well as the mechanistic link between these disorders. Laboratory and human studies on the activities of major flavonoids (flavones, isoflavones, flavonols, etc.) are discussed.


Assuntos
Flavonoides/administração & dosagem , Inflamação/tratamento farmacológico , Resistência à Insulina , Extratos Vegetais/administração & dosagem , Animais , Flavonoides/química , Humanos , Inflamação/genética , Inflamação/imunologia , Estrutura Molecular , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
16.
Molecules ; 23(6)2018 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-29914196

RESUMO

Ovarian cancer has the highest mortality rate of all gynecological malignancies and the five-year death rate of patients has remained high in the past five decades. Recently, with the rise of cancer stem cells (CSCs) theory, an increasing amount of research has suggested that CSCs give rise to tumor recurrence and metastasis. Theasaponin E1 (TSE1), which was isolated from green tea (Camellia sinensis) seeds, has been proposed to be an effective compound for tumor treatment. However, studies on whether TSE1 takes effect through CSCs have rarely been reported. In this paper, ALDH-positive (ALDH+) ovarian cancer stem-like cells from two platinum-resistant ovarian cancer cell lines A2780/CP70 and OVCAR-3 were used to study the anti-proliferation effect of TSE1 on CSCs. The ALDH+ cells showed significantly stronger sphere forming vitality and stronger cell migration capability. In addition, the stemness marker proteins CD44, Oct-4, Nanog, as well as Bcl-2 and MMP-9 expression levels of ALDH+ cells were upregulated compared with the original tumor cells, indicating that they have certain stem cell characteristics. At the same time, the results showed that TSE1 could inhibit cell proliferation and suspension sphere formation in ALDH+ cells. Our data suggests that TSE1 as a natural compound has the potential to reduce human ovarian cancer mortality. However, more research is still needed to find out the molecular mechanism of TSE1-mediated inhibition of ALDH+ cells and possible drug applications on the disease.


Assuntos
Aldeído Desidrogenase/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ácido Oleanólico/análogos & derivados , Neoplasias Ovarianas/metabolismo , Saponinas/farmacologia , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Saponinas/química , Chá/química
17.
Molecules ; 23(4)2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596355

RESUMO

Tea (Camellia sinensis) is an important crop, and its leaves are used to make the most widely consumed beverage, aside from water. People have been using leaves from tea plants to make teas for a long time. However, less attention has been paid to the flowers of tea plants, which is a waste of an abundant resource. In the past 15 years, researchers have attempted to discover, identify, and evaluate functional molecules from tea flowers, and have made insightful and useful discoveries. Here, we summarize the recent investigations into these functional molecules in tea flowers, including functional molecules similar to those in tea leaves, as well as the preponderant functional molecules in tea flowers. Tea flowers contain representative metabolites similar to those of tea leaves, such as catechins, flavonols, caffeine, and amino acids. The preponderant functional molecules in tea flowers include saponins, polysaccharides, aromatic compounds, spermidine derivatives, and functional proteins. We also review the safety and biological functions of tea flowers. Tea flower extracts are proposed to be of no toxicological concern based on evidence from the evaluation of mutagenicity, and acute and subchronic toxicity in rats. The presence of many functional metabolites in tea flowers indicates that tea flowers possess diverse biological functions, which are mostly related to catechins, polysaccharides, and saponins. Finally, we discuss the potential for, and challenges facing, future applications of tea flowers as a second resource from tea plants.


Assuntos
Cafeína/química , Camellia sinensis/química , Catequina/química , Flavonóis/química , Flores/química , Extratos Vegetais/química , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Cafeína/metabolismo , Camellia sinensis/metabolismo , Catequina/metabolismo , Flavonóis/metabolismo , Flores/metabolismo , Humanos
18.
Int J Mol Sci ; 19(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301278

RESUMO

Ovarian cancer has the highest fatality rate among the gynecologic cancers. The side effects, high relapse rate, and drug resistance lead to low long-term survival rate (less than 40%) of patients with advanced ovarian cancer. Theaflavin-3,3'-digallate (TF3), a black tea polyphenol, showed less cytotoxicity to normal ovarian cells than ovarian cancer cells. We aimed to investigate whether TF3 could potentiate the inhibitory effect of cisplatin against human ovarian cancer cell lines. In the present study, combined treatment with TF3 and cisplatin showed a synergistic cytotoxicity against A2780/CP70 and OVCAR3 cells. Treatment with TF3 could increase the intracellular accumulation of platinum (Pt) and DNA-Pt adducts and enhanced DNA damage induced by cisplatin in both cells. Treatment with TF3 decreased the glutathione (GSH) levels and upregulated the protein levels of the copper transporter 1 (CTR1) in both cells, which led to the enhanced sensitivity of both ovarian cancer cells to cisplatin. The results imply that TF3 might be used as an adjuvant to potentiate the inhibitory effect of cisplatin against advanced ovarian cancer.


Assuntos
Biflavonoides/farmacologia , Catequina/análogos & derivados , Proteínas de Transporte de Cátions/metabolismo , Cisplatino/farmacologia , Glutationa/metabolismo , Neoplasias Ovarianas/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Transportador de Cobre 1 , Adutos de DNA/metabolismo , Dano ao DNA , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/patologia , Regulação para Cima/efeitos dos fármacos
19.
Molecules ; 22(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28974006

RESUMO

Ovarian cancer is regarded as one of the most severe malignancies for women in the world. Death rates have remained steady over the past five decades, due to the undeniable inefficiency of the current treatment in preventing its recurrence and death. The development of new effective alternative agents for ovarian cancer treatment is becoming increasingly critical. Tea saponins (TS) are triterpenoidsaponins composed of sapogenins, glycosides, and organic acids, which possess a variety of pharmacological activities, and have shown promise in the anti-cancer field. Through cell CellTiter 96® Aqueous One Solution Cell Proliferation assay (MTS) assay, colony formation, Hoechst 33342 staining assay, caspase-3/7 activities, flow cytometry for apoptosis analysis, and Western blot, we observed that TS isolated from the seeds of tea plants, Camellia sinensis, exhibited strong anti-proliferation inhibitory effects on OVCAR-3 and A2780/CP70 ovarian cancer cell lines. Our results indicate that TS may selectivity inhibit human ovarian cancer cells by mediating apoptosis through the extrinsic pathway, and initiating anti-angiogenesis via decreased VEGF protein levels in a HIF-1α-dependent pathway. Our data suggests that, in the future, TS could be incorporated into a potential therapeutic agent against human ovarian cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Saponinas/química , Saponinas/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Apoptose , Camellia sinensis/química , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Ácido Oleanólico/química , Extratos Vegetais/química , Saponinas/isolamento & purificação , Sementes/química , Transdução de Sinais , Chá/química , Triterpenos/isolamento & purificação , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
20.
Int J Oncol ; 51(5): 1508-1520, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29048667

RESUMO

Adverse side effects and acquired resistance to conventional chemotherapy based on platinum drive the exploration of other selective anticancer drugs. Theaflavin­3-gallate (TF2a) and theaflavin­3'-gallate (TF2b), theaflavin monomers in black tea, exhibited a potent growth inhibitory effect on cisplatin-resistant ovarian cancer A2780/CP70 cells and were less cytotoxic to normal ovarian IOSE-364 cell line. Flow cytometry analysis and western blotting indicated that TF2a and TF2b induced apoptosis and G1 cell cycle arrest in ovarian cancer A2780/CP70 cells. Hoechst 33342 staining was used to confirm the apoptotic effect. Downregulation of CDK2 and CDK4 for TF2a and CDK2 and cyclin E1 for TF2b led to the accumulation of cells in G1 phase. TF2a and TF2b induced apoptosis and G1 through p53-dependent pathways. TF2a and TF2b induced DNA damage through ATM/Chk/p53 pathway. TF2a and TF2b also induced inhibition of A2780/CP70 cells through Akt and MAPK pathways. The results of this study implied that TF2a and TF2b might help prevent and treat platinum-resistant ovarian cancer.


Assuntos
Biflavonoides/administração & dosagem , Catequina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Neoplasias Ovarianas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Biflavonoides/química , Catequina/química , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Feminino , Citometria de Fluxo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Ácido Gálico/administração & dosagem , Ácido Gálico/química , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteína Oncogênica v-akt/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA