RESUMO
Kaempferia parviflora, a medicinal herb, treats hypertension and promotes longevity with good health and well-being. Its bioactive component is poorly soluble in water, resulting in poor absorption. This study aimed to enhance the bioavailability of K. parviflora dichloromethane (KPD) extract using a self-nanoemulsifying drug delivery system (SNEDDS). KPD was dissolved in diethylene glycol monoethyl, polyoxyl-35 castor oil and caprylic/capric glyceride, and clear yellow SNEDDS solution was obtained. The methoxyflavone markers were used for content and dissolution analysis. Solid SNEDDS was prepared by stepwise mixing of KPD using a mortar and pestle (1:1 ratio) with five solid carriers: Aerosil® 200, Florite® RE, Neusilin® US2 (NEUS), Fujicalin®, and Neusilin® UFL2. The USP apparatus II with simulated gastric fluid USP (SGF without pepsin, pH 1.2) was used in order to perform the in vitro dissolution. The methoxyflavones dissolution at 60 min from KPD, SEDDS, and SNEDDS/NEUS were approximately 16, 92, and 73%, respectively. The pharmacokinetic profiles of methoxyflavones for oral administration were studied using Wistar rats; the areas under the curve of SNEDDS/NEUS (1.77-fold) and SNEDDS (5.38-fold) were significantly higher than that of KPD. The developed formulations showed good stability after storage for 6 months under accelerated and normal conditions.
Assuntos
Sistemas de Liberação de Medicamentos , Flavonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Zingiberaceae/química , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões , Flavonas/isolamento & purificação , Flavonas/farmacocinética , Masculino , Extratos Vegetais/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Água/químicaRESUMO
Kaempferia parviflora, a plant in the family Zingiberaceae, has been used in Thai traditional medicines for treating hypertension and promoting longevity with good health and well-being. However, its limited aqueous solubility and low dissolution restrict its bioavailability. The aim of the study was therefore to improve the dissolution rate of K. parviflora extracted with dichloromethane (KPD) by solid dispersions. Different water-soluble polymers were applied to improve dissolution of KPD. The solid dispersions in different ratios were prepared by solvent evaporation method. Only hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol-polyethylene glycol grafted copolymer (PVA-co-PEG) could be used to produce homogeneous, powdered solid dispersions. Physical characterization by scanning electron microscopy, hot stage microscopy, differential scanning calorimetry and powder X-ray diffractometry, in comparison with corresponding physical mixtures, showed the changes in solid state during the formation of solid dispersions. Dissolution of a selected marker, 5,7,4'-trimethoxyflavone (TMF), from KPD/HPMC and KPD/PVA-co-PEG solid dispersions was significantly improved, compared with pure KPD. The dissolution enhancement by solid dispersion was influenced by both type and content of polymers. The stability of KPD/HPMC and KPD/PVA-co-PEG solid dispersions was also good after 6-month storage in both long-term and accelerated conditions. These results identified that the KPD/HPMC and KPD/PVA-co-PEG solid dispersions were an effective new approach for pharmaceutical application of K. parviflora.