Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948139

RESUMO

Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1-/- deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.


Assuntos
Artrite Experimental/metabolismo , Calcifediol/análogos & derivados , Calcitriol/farmacologia , Receptores Imunológicos/biossíntese , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/genética , Artrite Experimental/patologia , Calcifediol/farmacologia , Camundongos , Camundongos Knockout , Receptores Imunológicos/genética , Linfócitos T/patologia
2.
Front Immunol ; 12: 678487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276665

RESUMO

The ability to use large doses of vitamin D3 (D3) to chronically treat autoimmune diseases such as rheumatoid arthritis (RA) is prohibitive due to its calcemic effect which can damage vital organs. Cytochrome P450scc (CYP11A1) is able to convert D3 into the noncalcemic analog 20S-hydroxyvitamin D3 [20S(OH)D3]. We demonstrate that 20S(OH)D3 markedly suppresses clinical signs of arthritis and joint damage in a mouse model of RA. Furthermore, treatment with 20S(OH)D3 reduces lymphocyte subsets such as CD4+ T cells and CD19+ B cells leading to a significant reduction in inflammatory cytokines. The ratio of T reg cells (CD4+CD25+Foxp3+ T cells) to CD3+CD4+ T cells is increased while there is a decrease in critical complement-fixing anti-CII antibodies. Since pro-inflammatory cytokines and antibodies against type II collagen ordinarily lead to destruction of cartilage and bone, their decline explains why arthritis is attenuated by 20(OH) D3. These results provide a basis for further consideration of 20S(OH)D3 as a potential treatment for RA and other autoimmune disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite/etiologia , Artrite/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Calcifediol/análogos & derivados , Animais , Artrite/tratamento farmacológico , Artrite/patologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/patologia , Biomarcadores , Calcifediol/farmacologia , Citocinas/metabolismo , Gerenciamento Clínico , Modelos Animais de Doenças , Duração da Terapia , Humanos , Contagem de Linfócitos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos , Resultado do Tratamento
3.
J Steroid Biochem Mol Biol ; 177: 159-170, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28676457

RESUMO

Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH)2D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as an adjuvant approach. The presence of multiple hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and which may act on alternative receptors, will be a future consideration when planning which forms of vitamin D to use for melanoma therapy.


Assuntos
Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Vitamina D/metabolismo , Animais , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia
4.
Steroids ; 110: 49-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27083311

RESUMO

Although the skin production of vitamin D is initiated by ultraviolet radiation type B (UVB), the role vitamin D plays in antioxidative or pro-oxidative responses remains to be elucidated. We have used immortalized human HaCaT keratinocytes as a model of proliferating epidermal cells to test the influence of vitamin D on cellular response to H2O2 or the anti-cancer drug, cisplatin. Incubation of keratinocytes with 1,25(OH)2D3 or its low calcemic analogues, 20(OH)D3, 21(OH)pD or calcipotriol, sensitized cells to ROS resulting in more potent inhibition of keratinocyte proliferation by H2O2 in the presence of vitamin D compounds. These results were supported by cell cycle and apoptosis analyses, and measurement of the mitochondrial transmembrane potentials (MMP), however some unique properties of individual secosteroids were observed. Furthermore, in HaCaT keratinocytes treated with H2O2, 1,25(OH)2D3, 21(OH)pD and calcipotriol stimulated the expression of SOD1 and CAT genes, but not SOD2, indicating a possible role of mitochondria in ROS-modulated cell death. 1,25(OH)2D3 also showed a short-term, protective effect on HaCaT keratinocytes, as exemplified by the inhibition of apoptosis and the maintenance of MMP. However, with prolonged incubation with H2O2 or cisplatin, 1,25(OH)2D3 caused an acceleration in the death of the keratinocytes. Therefore, we propose that lead vitamin D derivatives can protect the epidermis against neoplastic transformation secondary to oxidative or UV-induced stress through activation of vitamin D-signaling. Furthermore, our data suggest that treatment with low calcemic vitamin D analogues or the maintenance of optimal level of vitamin D by proper supplementation, can enhance the anticancer efficacy of cisplatin.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Vitamina D/farmacologia , Apoptose/efeitos dos fármacos , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vitamina D/análogos & derivados
5.
J Med Chem ; 58(19): 7881-7, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26367019

RESUMO

Bioactive vitamin D3 metabolites 20S,24S-dihydroxyvitamin D3 [20S,24S(OH)2D3] and 20S,24R-dihydroxyvitamin D3 [20S,24R(OH)2D3] were chemically synthesized and confirmed to be identical to their enzymatically generated counterparts. The absolute configurations at C24 and its influence on the kinetics of 1α-hydroxylation by CYP27B1 were determined. Their corresponding 1α-hydroxyl derivatives were subsequently produced. Biological comparisons of these products showed different properties with respect to vitamin D3 receptor activation, anti-inflammatory activity, and antiproliferative activity, with 1α,20S,24R(OH)2D3 being the most potent compound.


Assuntos
Interferon gama/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Células CACO-2/efeitos dos fármacos , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Hidroxilação , Isomerismo , Espectroscopia de Ressonância Magnética , Camundongos Endogâmicos DBA , Estrutura Molecular , Receptores de Calcitriol/genética , Receptores Imunológicos/metabolismo , Vitamina D/química
7.
Anticancer Res ; 34(5): 2153-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24778017

RESUMO

AIM: To discover novel [20(OH)D3] analogs as antiproliferative therapeutics. MATERIALS AND METHODS: We studied in vitro liver microsome stability, in vivo toxicity using mice, vitamin D receptor (VDR) translocation, in vitro antiproliferative effect, CYP enzyme metabolism. RESULTS: 20S- and 20R(OH)D3 had reasonable half-lives of 50 min and 30 min (average) respectively in liver microsomes. They were non-hypercalcemic at a high dose of 60 µg/kg. Three new 20(OH)D3 analogs were designed, synthesized and tested. They showed higher or comparable potency for inhibition of proliferation of normal keratinocytes and in the induction of VDR translocation from cytoplasm to nucleus, compared to 1,25(OH)2D3. These new analogs demonstrated different degrees of metabolism through a range of vitamin D-metabolizing CYP enzymes. CONCLUSION: Their lack of calcemic toxicity at high doses and their high biological activity suggest that this novel 20(OH)D3 scaffold may represent a promising platform for further development of therapeutically-useful agents.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Vitamina D/análogos & derivados , Animais , Meia-Vida , Camundongos , Receptores de Calcitriol/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA