Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(1): 185-197, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061348

RESUMO

BACKGROUND: Juices are currently a fast-growing segment in the fruit and vegetable industry sector. However, there are still no reports on the diversity of the phytochemical profile and health-promoting properties of commercial sea buckthorn (Hippophaë rhamnoides) juices. This study aimed to identify and quantify phytoprostanes, phytofurans by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), tocopherols, tocotrienols by ultra-performance liquid chromatography coupled with a fluorescence detector (UPLC-FL), carotenoids, and free amino acids by ultra-performance liquid chromatography coupled with a photodiode detector-quadrupole and tandem time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS), and assess their anti-cholinergic, anti-diabetic, anti-obesity, anti-inflammatory, and antioxidant potential by in vitro assays of commercial sea buckthorn juices. RESULTS: Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in sea buckthorn juices were identified for the first time. Juices contained eight F1 -, D1 -, B1 - and L1 -phytoprostanes and one phytofuran (32.31-1523.51 ng and up to 101.47 µg/100 g dry weight (DW)), four tocopherol congeners (22.23-94.08 mg 100 g-1 DW) and three tocotrienols (5.93-25.34 mg 100 g-1 DW). Eighteen carotenoids were identified, including ten xanthophylls, seven carotenes and phytofluene, at a concentration of 133.65 to 839.89 mg 100 g-1 DW. Among the 20 amino acids (175.92-1822.60 mg 100 g-1 DW), asparagine was dominant, and essential and conditionally essential amino acids constituted 11 to 41% of the total. The anti-enzyme and antioxidant potential of juices correlated selectively with the composition. CONCLUSION: Sea buckthorn juice can be a valuable dietary source of vitamins E and A, oxylipins and amino acids, used in the prevention of metabolic syndrome, inflammation, and neurodegenerative processes. The differentiation of the composition and the bioactive potential of commercial juices indicate that, for the consumer, it should be important to choose juices from the declared berry cultivars and crops. © 2021 Society of Chemical Industry.


Assuntos
Carotenoides/química , Sucos de Frutas e Vegetais/análise , Hippophae/química , Extratos Vegetais/química , Tocoferóis/química , Tocotrienóis/química , Aminoácidos/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Espectrometria de Massas em Tandem
2.
J Sci Food Agric ; 102(4): 1466-1474, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34398983

RESUMO

BACKGROUND: Nowadays it is highly important to find new, cheap and widely available sources of tocopherol and tocotrienol compounds, and leaves are promising unconventional sources. The main goal of this study was to extend the currently limited knowledge concerning tocopherol and tocotrienol isomers composition determined using ultra-high performance liquid chromatography with fluorescence detection analysis for various fruit tree leaves such as apple, pear, quince, apricot, peach, plum, sour cherry and sweet cherry. The leaves were collected 2 weeks after tree blooming and after fruit collection. Tocopherol and tocotrienol isomers were identified and quantified for the first time in all fruit tree leaves. RESULTS: The total tocopherol content ranged from 203.34 to 260.86 µg g-1 dry weight for spring leaves and from 23.83 to 235.62 µg g-1 dry weight for autumn leaves and consisted mainly of α-tocopherol. The rest of the isomers of tocopherol and tocotrienols were also found, but in trace amounts. A significantly lower content of tocopherols and tocotrienols was detected in leaves after autumn collection of fruits compared to leaves collected after blooming. Among the analyzed leaves, time collected and species were significantly more important than their cultivars. Regarding quantification analysis, apricot > peach > > plums > apples leaves were identified as the best sources of tocopherols, and sweet and sour cherry leaves exhibited a lower content. CONCLUSION: Fruit tree leaves are a novel significant source and good material for isolation of α-tocopherol for application in cosmetics, pharmaceuticals or in the food industry - for example, production of beverages or other functional foods. © 2021 Society of Chemical Industry.


Assuntos
Tocotrienóis , Frutas , Tocoferóis , Árvores , Vitamina E
3.
Food Chem ; 349: 129156, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581431

RESUMO

This study focused on the identification (by LC-PDA-qTof-ESI-MS) and quantification (by UPLC-PDA) of isoprenoids of the fruit tree leaves (FTL) of commonly consumed fruits: apple, pears, quince, apricot, peach, plums, sweet and sour cherry. The FTL were collected at 2 time points: after tree blooming and after fruit collection. In FTL 7 carotenoids and 16 chlorophylls were identified, but the number of labeled chlorophyll compounds depended on the species. FTL of apple, sour cherry and apricot were identified as the best sources of chlorophylls (mean 404.8, 388.7 and 364.5 mg/100 g dw, respectively) and sweet and sour cherry leaves as the best sources of carotenoids (831.4 and 1162.0 mg/100 g dw, respectively). A lower content of chlorophylls and carotenoids, but not significantly, was detected in leaves after autumn collection of fruits compared to leaves collected after blooming. Fruit tree leaves are good material for isolation of chlorophylls and carotenoids for application in cosmetics, pharmaceuticals or in the food industry, e.g. production of beverages or puree.


Assuntos
Carotenoides/análise , Clorofila/análise , Cromatografia Líquida , Frutas/química , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray , Árvores/química , Malus/química , Rosaceae/química , Terpenos/análise
4.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825580

RESUMO

Sea buckthorn (Hippophaë rhamnoides L.) juice with inulin, maltodextrin, and inulin:maltodextrin (1:2 and 2:1) were spray-, freeze- and vacuum-dried at 50, 70 and 90 °C. The study aimed to assess the impact of drying methods and carrier agents on physical properties (moisture content, water activity, true and bulk density, porosity, color parameters, browning index), chemical components (hydroxymethylfurfural and phenolic compounds) and antioxidant capacity of sea buckthorn juice powders. Storage of powders was carried out for six months. Inulin caused stronger water retention in powders than maltodextrin. Vacuum drying provided powders with the highest bulk density. Maltodextrin did not promote browning and HMF formation as strongly as inulin. More phenolic compounds were found in powders with maltodextrin. Storage increased the antioxidant capacity of powders. The results obtained will be useful in optimizing the powders production on an industrial scale, designing attractive food ingredients.


Assuntos
Antioxidantes/análise , Dessecação/métodos , Sucos de Frutas e Vegetais/análise , Hippophae/química , Extratos Vegetais/análise , Extratos Vegetais/química , Pós/química , Manipulação de Alimentos , Liofilização , Higroscópicos/química , Inulina/química , Polissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA