Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35607978

RESUMO

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Macrófagos , Camundongos , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
2.
Artigo em Inglês | MEDLINE | ID: mdl-31036687

RESUMO

Buruli ulcer is treatable with antibiotics. An 8-week course of rifampin (RIF) and either streptomycin (STR) or clarithromycin (CLR) cures over 90% of patients. However, STR requires injections and may be toxic, and CLR shares an adverse drug-drug interaction with RIF and may be poorly tolerated. Studies in a mouse footpad infection model showed that increasing the dose of RIF or using the long-acting rifamycin rifapentine (RPT), in combination with clofazimine (CFZ), a relatively well-tolerated antibiotic, can shorten treatment to 4 weeks. CFZ is reduced by a component of the electron transport chain (ETC) to produce reactive oxygen species toxic to bacteria. Synergistic activity of CFZ with other ETC-targeting drugs, the ATP synthase inhibitor bedaquiline (BDQ) and the bc1:aa3 oxidase inhibitor Q203 (now named telacebec), was recently described against Mycobacterium tuberculosis Recognizing that M. tuberculosis mutants lacking the alternative bd oxidase are hypersusceptible to Q203 and that Mycobacterium ulcerans is a natural bd oxidase-deficient mutant, we tested the in vitro susceptibility of M. ulcerans to Q203 and evaluated the treatment-shortening potential of novel 3- and 4-drug regimens combining RPT, CFZ, Q203, and/or BDQ in a mouse footpad model. The MIC of Q203 was extremely low (0.000075 to 0.00015 µg/ml). Footpad swelling decreased more rapidly in mice treated with Q203-containing regimens than in mice treated with RIF and STR (RIF+STR) and RPT and CFZ (RPT+CFZ). Nearly all footpads were culture negative after only 2 weeks of treatment with regimens containing RPT, CFZ, and Q203. No relapse was detected after only 2 weeks of treatment in mice treated with any of the Q203-containing regimens. In contrast, 15% of mice receiving RIF+STR for 4 weeks relapsed. We conclude that it may be possible to cure patients with Buruli ulcer in 14 days or less using Q203-containing regimens rather than currently recommended 56-day regimens.


Assuntos
Antibacterianos/farmacologia , Úlcera de Buruli/tratamento farmacológico , Mycobacterium ulcerans/efeitos dos fármacos , Animais , Carga Bacteriana , Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Claritromicina/farmacologia , Clofazimina/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Quimioterapia Combinada , Transporte de Elétrons/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium ulcerans/genética , Piperidinas/farmacologia , Piridinas/farmacologia , Rifampina/análogos & derivados , Rifampina/farmacologia , Estreptomicina/farmacologia
3.
Antimicrob Agents Chemother ; 60(8): 4590-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185800

RESUMO

The novel ATP synthase inhibitor bedaquiline recently received accelerated approval for treatment of multidrug-resistant tuberculosis and is currently being studied as a component of novel treatment-shortening regimens for drug-susceptible and multidrug-resistant tuberculosis. In a limited number of bedaquiline-treated patients reported to date, ≥4-fold upward shifts in bedaquiline MIC during treatment have been attributed to non-target-based mutations in Rv0678 that putatively increase bedaquiline efflux through the MmpS5-MmpL5 pump. These mutations also confer low-level clofazimine resistance, presumably by a similar mechanism. Here, we describe a new non-target-based determinant of low-level bedaquiline and clofazimine cross-resistance in Mycobacterium tuberculosis: loss-of-function mutations in pepQ (Rv2535c), which corresponds to a putative Xaa-Pro aminopeptidase. pepQ mutants were selected in mice by treatment with clinically relevant doses of bedaquiline, with or without clofazimine, and were shown to have bedaquiline and clofazimine MICs 4 times higher than those for the parental H37Rv strain. Coincubation with efflux inhibitors verapamil and reserpine lowered bedaquiline MICs against both mutant and parent strains to a level below the MIC against H37Rv in the absence of efflux pump inhibitors. However, quantitative PCR (qPCR) revealed no significant differences in expression of Rv0678, mmpS5, or mmpL5 between mutant and parent strains. Complementation of a pepQ mutant with the wild-type gene restored susceptibility, indicating that loss of PepQ function is sufficient for reduced susceptibility both in vitro and in mice. Although the mechanism by which mutations in pepQ confer bedaquiline and clofazimine cross-resistance remains unclear, these results may have clinical implications and warrant further evaluation of clinical isolates with reduced susceptibility to either drug for mutations in this gene.


Assuntos
Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Diarilquinolinas/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/metabolismo
4.
PLoS Negl Trop Dis ; 9(6): e0003823, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042792

RESUMO

Treatment of Buruli ulcer, or Mycobacterium ulcerans disease, has shifted from surgical excision and skin grafting to antibiotic therapy usually with 8 weeks of daily rifampin (RIF) and streptomycin (STR). Although the results have been highly favorable, administration of STR requires intramuscular injection and carries the risk of side effects, such as hearing loss. Therefore, an all-oral, potentially less toxic, treatment regimen has been sought and encouraged by the World Health Organization. A combination of RIF plus clarithromycin (CLR) has been successful in patients first administered RIF+STR for 2 or 4 weeks. Based on evidence of efficacy of clofazimine (CFZ) in humans and mice with tuberculosis, we hypothesized that the combination of RIF+CFZ would be effective against M. ulcerans in the mouse footpad model of M. ulcerans disease because CFZ has similar MIC against M. tuberculosis and M. ulcerans. For comparison, mice were also treated with the gold standard of RIF+STR, the proposed RIF+CLR alternative regimen, or CFZ alone. Treatment was initiated after development of footpad swelling, when the bacterial burden was 4.64±0.14log10 CFU. At week 2 of treatment, the CFU counts had increased in untreated mice, remained essentially unchanged in mice treated with CFZ alone, decreased modestly with either RIF+CLR or RIF+CFZ, and decreased substantially with RIF+STR. At week 4, on the basis of footpad CFU counts, the combination regimens were ranked as follows: RIF+STR>RIF+CLR>RIF+CFZ. At weeks 6 and 8, none of the mice treated with these regimens had detectable CFU. Footpad swelling declined comparably with all of the combination regimens, as did the levels of detectable mycolactone A/B. In mice treated for only 6 weeks and followed up for 24 weeks, there were no relapses in RIF+STR treated mice, one (5%) relapse in RIF+CFZ-treated mice, but >50% in RIF+CLR treated mice. On the basis of these results, RIF+CFZ has potential as a continuation phase regimen for treatment of M. ulcerans disease.


Assuntos
Úlcera de Buruli/tratamento farmacológico , Clofazimina/farmacologia , Quimioterapia Combinada/métodos , Rifampina/farmacologia , Animais , Claritromicina/farmacologia , Clofazimina/farmacocinética , Contagem de Colônia Microbiana , Avaliação Pré-Clínica de Medicamentos , Pé/patologia , Macrolídeos/isolamento & purificação , Camundongos , Testes de Sensibilidade Microbiana , Estreptomicina/farmacologia , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento
5.
Science ; 348(6239): 1106-12, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26045430

RESUMO

The discovery of Streptomyces-produced streptomycin founded the age of tuberculosis therapy. Despite the subsequent development of a curative regimen for this disease, tuberculosis remains a worldwide problem, and the emergence of multidrug-resistant Mycobacterium tuberculosis has prioritized the need for new drugs. Here we show that new optimized derivatives from Streptomyces-derived griselimycin are highly active against M. tuberculosis, both in vitro and in vivo, by inhibiting the DNA polymerase sliding clamp DnaN. We discovered that resistance to griselimycins, occurring at very low frequency, is associated with amplification of a chromosomal segment containing dnaN, as well as the ori site. Our results demonstrate that griselimycins have high translational potential for tuberculosis treatment, validate DnaN as an antimicrobial target, and capture the process of antibiotic pressure-induced gene amplification.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/uso terapêutico , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA , Modelos Animais de Doenças , Desenho de Fármacos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/uso terapêutico , Estrutura Secundária de Proteína , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
6.
Antimicrob Agents Chemother ; 59(4): 2129-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624335

RESUMO

The Mycobacterium avium complex is the most common cause of nontuberculous mycobacterial lung disease worldwide; yet, an optimal treatment regimen for M. avium complex infection has not been established. Clarithromycin is accepted as the cornerstone drug for treatment of M. avium lung disease; however, good model systems, especially animal models, are needed to evaluate the most effective companion drugs. We performed a series of experiments to evaluate and use different mouse models (comparing BALB/c, C57BL/6, nude, and beige mice) of M. avium infection and to assess the anti-M. avium activity of single and combination drug regimens, in vitro, ex vivo, and in mice. In vitro, clarithromycin and moxifloxacin were most active against M. avium, and no antagonism was observed between these two drugs. Nude mice were more susceptible to M. avium infection than the other mouse strains tested, but the impact of treatment was most clearly seen in M. avium-infected BALB/c mice. The combination of clarithromycin-ethambutol-rifampin was more effective in all infected mice than moxifloxacin-ethambutol-rifampin; the addition of moxifloxacin to the clarithromycin-containing regimen did not increase treatment efficacy. Clarithromycin-containing regimens are the most effective for M. avium infection; substitution of moxifloxacin for clarithromycin had a negative impact on treatment efficacy.


Assuntos
Antibacterianos/uso terapêutico , Complexo Mycobacterium avium/efeitos dos fármacos , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Animais , Antibacterianos/farmacologia , Contagem de Colônia Microbiana , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Testes de Sensibilidade Microbiana , Infecção por Mycobacterium avium-intracellulare/patologia , Especificidade da Espécie
7.
Am J Respir Crit Care Med ; 188(5): 608-12, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23822735

RESUMO

RATIONALE: Although observational studies suggest that clofazimine-containing regimens are highly active against drug-resistant tuberculosis, the contribution of clofazimine for the treatment of this disease has never been systematically evaluated. OBJECTIVES: Our goal was to directly compare the activity of a standard second-line drug regimen with or without the addition of clofazimine in a mouse model of multidrug-resistant tuberculosis. Our comparative outcomes included time to culture conversion in the mouse lungs and the percentage of relapses after treatment cessation. METHODS: Mice were aerosol-infected with an isoniazid-resistant (as a surrogate of multidrug-resistant) strain of Mycobacterium tuberculosis. Treatment, which was administered for 5 to 9 months, was initiated 2 weeks after infection and comprised the following second-line regimen: daily (5 d/wk) moxifloxacin, ethambutol, and pyrazinamide, supplemented with amikacin during the first 2 months. One-half of the mice also received daily clofazimine. The decline in lung bacterial load was assessed monthly using charcoal-containing agar to reduce clofazimine carryover. Relapse was assessed 6 months after treatment cessation. MEASUREMENTS AND MAIN RESULTS: After 2 months, the bacillary load in lungs was reduced from 9.74 log10 at baseline to 3.61 and 4.68 in mice treated with or without clofazimine, respectively (P < 0.001). Mice treated with clofazimine were culture-negative after 5 months, whereas all mice treated without clofazimine remained heavily culture-positive for the entire 9 months of the study. The relapse rate was 7% among mice treated with clofazimine for 8 to 9 months. CONCLUSIONS: The clofazimine contribution was substantial in these experimental conditions.


Assuntos
Antituberculosos/uso terapêutico , Clofazimina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Farmacorresistência Bacteriana Múltipla , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Recidiva
8.
Am J Respir Crit Care Med ; 188(5): 600-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23805786

RESUMO

RATIONALE: A major priority in tuberculosis (TB) is to reduce effective treatment times and emergence of resistance. Recent studies in macrophages and zebrafish show that inhibition of mycobacterial efflux pumps with verapamil reduces the bacterial drug tolerance and may enhance drug efficacy. OBJECTIVES: Using mice, a mammalian model known to predict human treatment responses, and selecting conservative human bioequivalent doses, we tested verapamil as an adjunctive drug together with standard TB chemotherapy. As verapamil is a substrate for CYP3A4, which is induced by rifampin, we evaluated the pharmacokinetic/pharmacodynamic relationships of verapamil and rifampin coadministration in mice. METHODS: Using doses that achieve human bioequivalent levels matched to those of standard verapamil, but lower than those of extended release verapamil, we evaluated the activity of verapamil added to standard chemotherapy in both C3HeB/FeJ (which produce necrotic granulomas) and the wild-type background C3H/HeJ mouse strains. Relapse rates were assessed after 16, 20, and 24 weeks of treatment in mice. MEASUREMENTS AND MAIN RESULTS: We determined that a dose adjustment of verapamil by 1.5-fold is required to compensate for concurrent use of rifampin during TB treatment. We found that standard TB chemotherapy plus verapamil accelerates bacterial clearance in C3HeB/FeJ mice with near sterilization, and significantly lowers relapse rates in just 4 months of treatment when compared with mice receiving standard therapy alone. CONCLUSIONS: These data demonstrate treatment shortening by verapamil adjunctive therapy in mice, and strongly support further study of verapamil and other efflux pump inhibitors in human TB.


Assuntos
Antituberculosos/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Verapamil/uso terapêutico , Adjuvantes Farmacêuticos/administração & dosagem , Adjuvantes Farmacêuticos/uso terapêutico , Animais , Antituberculosos/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos C3H , Mycobacterium tuberculosis/efeitos dos fármacos , Recidiva , Rifampina/administração & dosagem , Fatores de Tempo , Verapamil/administração & dosagem
9.
Am J Respir Crit Care Med ; 188(1): 97-102, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23593945

RESUMO

RATIONALE: High-dose levofloxacin (L) (1,000 mg) was as active as moxifloxacin (M) (400 mg) in an early bactericidal activity trial, suggesting these fluoroquinolones could be used interchangeably. Whether pyrazinamide (Z) contributes sterilizing activity beyond the first 2 months in fluoroquinolone-containing second-line regimens remains unknown. OBJECTIVES: We compared the efficacy of M and high-dose L alone or in combination with ethionamide (Et), amikacin (A), and Z given for 2 or 7 months. METHODS: A pharmacokinetic study was performed to determine the L dose equivalent to 1,000 mg in humans. Treatment started 2 weeks after aerosol infection with Mycobacterium tuberculosis H37Rv. Mice received M or L alone or in combination with 2 months of EtZA followed by 5 months of Et or EtZ. MEASUREMENTS AND MAIN RESULTS: After 2 months of treatment, lung colony-forming unit (CFU) counts were similar in mice receiving either fluoroquinolone alone, but, after 4 and 5 months, CFU counts were 2 log10 lower in mice receiving M. Mice receiving 2MEtZA/3MEt and 2LEtZA/3LEt had 1.0 and 2.7 log10 lung CFUs, respectively. When Z was given throughout, both regimens rendered mice culture negative by 5 months, and most mice did not relapse after 7 months of treatment, with fewer relapses observed in the M group after 6 and 7 months of treatment. CONCLUSIONS: In murine tuberculosis, M had superior efficacy compared with L despite lower serum drug exposures and may remain the fluoroquinolone of choice for second-line regimens. Z contributed substantial sterilizing activity beyond 2 months in fluoroquinolone-containing second-line regimens, largely compensating for L's weaker activity.


Assuntos
Antibacterianos/administração & dosagem , Antituberculosos/administração & dosagem , Compostos Aza/administração & dosagem , Levofloxacino , Ofloxacino/uso terapêutico , Pirazinamida/administração & dosagem , Quinolinas/administração & dosagem , Tuberculose/tratamento farmacológico , Análise de Variância , Animais , Antibacterianos/farmacocinética , Antituberculosos/farmacocinética , Compostos Aza/farmacocinética , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada/métodos , Feminino , Fluoroquinolonas , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Ofloxacino/farmacocinética , Pirazinamida/farmacocinética , Quinolinas/farmacocinética , Resultado do Tratamento
10.
Indian J Med Res ; 136(5): 808-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23287128

RESUMO

BACKGROUND & OBJECTIVES: Pyrazinamide is an essential component of first line anti-tuberculosis regimen as well as most of the second line regimens. This drug has a unique sterilizing activity against Mycobacterium tuberculosis. Its unique role in tuberculosis treatment has lead to the search and development of its structural analogues. One such analogue is 5-chloro-pyrazinamide (5-Cl-PZA) that has been tested under in vitro conditions against M. tuberculosis. The present study was designed with an aim to assess the activity of 5-Cl-PZA, alone and in combination with first-line drugs, against murine tuberculosis. METHODS: The minimum inhibitory concentration (MIC) of 5-Cl-PZA in Middlebrook 7H9 broth (neutral pH) and the inhibitory titre of serum from mice that received a 300 mg/kg oral dose of 5-Cl-PZA 30 min before cardiac puncture were determined. To test the tolerability of orally administered 5-Cl-PZA, uninfected mice received doses up to 300 mg/kg for 2 wk. Four weeks after low-dose aerosol infection either with M. tuberculosis or M. bovis, mice were treated 5 days/wk with 5-Cl-PZA, at doses ranging from 37.5 to 150 mg/kg, either alone or in combination with isoniazid and rifampicin. Antimicrobial activity was assessed by colony-forming unit counts in lungs after 4 and 8 wk of treatment. RESULTS: The MIC of 5-Cl-PZA against M. tuberculosis was between 12.5 and 25 µg/ml and the serum inhibitory titre was 1:4. Under the same experimental conditions, the MIC of pyrazinamide was >100 µg/ml and mouse serum had no inhibitory activity after a 300 mg/kg dose; 5-Cl-PZA was well tolerated in uninfected and infected mice up to 300 and 150 mg/kg, respectively. While PZA alone and in combination exhibited its usual antimicrobial activity in mice infected with M. tuberculosis and no activity in mice infected with M. bovis, 5-Cl-PZA exhibited antimicrobial activity neither in mice infected with M. tuberculosis nor in mice infected with M. bovis. INTERPRETATION & CONCLUSION: Our findings showed that 5-Cl-PZA at doses up to 150 mg/kg was not active in chronic murine TB model. Further studies need to be done to understand the mechanism and mode of inactivation in murine model of tuberculosis.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/análogos & derivados , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium bovis/isolamento & purificação , Mycobacterium tuberculosis/isolamento & purificação , Pirazinamida/uso terapêutico , Tuberculose/microbiologia
11.
Science ; 324(5928): 801-4, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19299584

RESUMO

New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Polissacarídeos/biossíntese , Racemases e Epimerases/antagonistas & inibidores , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Tiazinas/farmacologia , Tiazinas/uso terapêutico , Tuberculose/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antituberculosos/síntese química , Antituberculosos/química , Arabinose/metabolismo , Parede Celular/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/líquido cefalorraquidiano , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Etambutol/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Racemases e Epimerases/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Tiazinas/síntese química , Tiazinas/química , Tuberculose/microbiologia
12.
Am J Respir Crit Care Med ; 172(11): 1452-6, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16151038

RESUMO

RATIONALE: Priorities for developing improved regimens for treatment of latent tuberculosis (TB) infection include (1) developing shorter and/or more intermittently administered regimens that are easier to supervise and (2) developing and evaluating regimens that are active against multidrug-resistant organisms. OBJECTIVES AND METHODS: By using a previously validated murine model that involves immunizing mice with Mycobacterium bovis bacillus Calmette-Guérin to augment host immunity before infection with virulent Mycobacterium tuberculosis, we evaluated new treatment regimens including rifapentine and moxifloxacin, and assessed the potential of the Mycobacterium leprae heat shock protein-65 DNA vaccine to augment the activity of moxifloxacin. MEASUREMENTS: Quantitative spleen colony-forming unit counts, and the proportion of mice with culture-positive relapse after treatment, were determined. MAIN RESULTS: Three-month, once-weekly regimens of rifapentine combined with either isoniazid or moxifloxacin were as active as daily isoniazid for 6-9 mo. Six-month daily combinations of moxifloxacin with pyrazinamide, ethionamide, or ethambutol were more active than pyrazinamide plus ethambutol, a regimen recommended for latent TB infection after exposure to multidrug-resistant TB. The combination of moxifloxacin with the experimental nitroimidazopyran PA-824 was especially active. Finally, the heat shock protein-65 DNA vaccine had no effect on colony-forming unit counts when given alone, but augmented the bactericidal activity of moxifloxacin. CONCLUSIONS: Together, these findings suggest that rifapentine, moxifloxacin, and, perhaps, therapeutic DNA vaccination have the potential to improve on the current treatment of latent TB infection.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Compostos Aza/uso terapêutico , Quinolinas/uso terapêutico , Rifampina/análogos & derivados , Tuberculose/tratamento farmacológico , Vacinas de DNA/uso terapêutico , Animais , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Fluoroquinolonas , Seguimentos , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/uso terapêutico , Baço/microbiologia , Resultado do Tratamento , Tuberculose/microbiologia
13.
Am J Respir Crit Care Med ; 172(11): 1457-62, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16141439

RESUMO

RATIONALE: Treatment of tuberculosis with an efficacious once-weekly regimen would be a significant achievement in improving patient adherence. Currently, the only recommended once-weekly continuation phase regimen of isoniazid plus rifapentine (10 mg/kg) is inferior to standard twice-weekly therapy with isoniazid plus rifampin and is, therefore, restricted to non-high-risk patients. The substitution of moxifloxacin, a new 8-methoxyfluoroquinolone, for isoniazid and an increase in the dose of rifapentine could augment the activity of once-weekly regimens. METHODS: To test this hypothesis we evaluated the sterilizing activity of improved once-weekly rifapentine-based continuation phase regimens in a murine model that mimics the treatment of high-risk patients with tuberculosis. The bactericidal activity of standard daily therapy and standard intermittent therapy ("Denver" regimen) was also assessed to evaluate the effect of intermittent drug administration during the initial phase of therapy. RESULTS: After 2 mo of treatment, lung colony-forming unit counts were 1 log(10) lower in mice treated with standard daily therapy than with the Denver regimen. During the continuation phase, the sterilizing activity of once-weekly moxifloxacin plus rifapentine (15 mg/kg) was significantly greater than that of the predominantly twice-weekly Denver regimen of isoniazid plus rifampin. No significant difference in sterilizing activity was detected between once-weekly isoniazid plus rifapentine (15 mg/kg) and the Denver regimen. CONCLUSIONS: These results suggest that the efficacy of the once-weekly isoniazid plus rifapentine continuation phase regimen can be increased by substituting moxifloxacin for isoniazid and by increasing the dose of rifapentine to a clinically acceptable level of 15 mg/kg.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Compostos Aza/uso terapêutico , Quinolinas/uso terapêutico , Rifampina/análogos & derivados , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antibióticos Antituberculose/administração & dosagem , Antibióticos Antituberculose/farmacocinética , Compostos Aza/administração & dosagem , Compostos Aza/farmacocinética , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Quimioterapia Combinada , Feminino , Fluoroquinolonas , Seguimentos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Mycobacterium tuberculosis/isolamento & purificação , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Rifampina/administração & dosagem , Rifampina/farmacocinética , Rifampina/uso terapêutico , Resultado do Tratamento , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/microbiologia
14.
Antimicrob Agents Chemother ; 49(6): 2289-93, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15917523

RESUMO

The nitroimidazopyran PA-824 has potent in vitro activity against Mycobacterium tuberculosis, a narrow spectrum of activity limited primarily to the M. tuberculosis complex, and no demonstrable cross-resistance to a variety of antituberculosis drugs. In a series of experiments, we sequentially characterized the activity of PA-824 in an experimental murine model of tuberculosis. The minimal effective dose was 12.5 mg/kg of body weight/day. The minimal bactericidal dose (MBD) was 100 mg/kg/day. When PA-824 was used as monotherapy at the MBD, it exhibited promising bactericidal activity during the initial intensive phase of therapy that was similar to that of the equipotent dose of isoniazid in humans. In combination with isoniazid, PA-824 prevented the selection of isoniazid-resistant mutants. Perhaps more importantly, PA-824 also demonstrated potent activity during the continuation phase of therapy, during which it targeted bacilli that had persisted through an initial 2-month intensive phase of treatment with rifampin, isoniazid, and pyrazinamide. Together, these data strongly support further evaluation of PA-824 in combination with first- or second-line antituberculosis drugs to determine its potential contribution to the treatment of drug-susceptible or multidrug-resistant tuberculosis, respectively.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nitroimidazóis/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológico , Animais , Antituberculosos/administração & dosagem , Antituberculosos/farmacologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/isolamento & purificação , Nitroimidazóis/administração & dosagem , Nitroimidazóis/farmacologia , Distribuição Aleatória , Tuberculose Pulmonar/microbiologia
15.
Antimicrob Agents Chemother ; 46(6): 1875-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12019103

RESUMO

Moxifloxacin (MXF) is a new 8-methoxyquinolone with potent activity against Mycobacterium tuberculosis and a half-life of 9 to 12 h in humans. Previous in vivo studies using daily doses of 100 mg/kg of body weight have demonstrated bactericidal activity comparable to that of isoniazid (INH) in a murine model of tuberculosis (TB). Recent pharmacokinetic data suggest that MXF may have been underadministered in these studies and that a 400-mg/kg dose in mice better approximates the area under the concentration-time curve obtained in humans after a 400-mg oral dose. Therefore, the bactericidal activity of MXF in doses up to 400 mg/kg given daily or weekly for 28 days was assessed in mice infected intravenously with 5 x 10(6) CFU of M. tuberculosis. INH was used as a positive control. After 3 days of daily therapy, the CFU counts from splenic homogenates for mice treated with MXF in doses of 100 to 400 mg/kg/day were lower than those from pretreatment controls. No significant differences in CFU counts were seen when mice receiving INH or MXF at 50 mg/kg/day were compared to pretreatment controls. After 28 days of therapy, dose-dependent reductions in CFU counts in splenic homogenates were seen for daily MXF therapy. The maximum bactericidal effect was seen with daily doses of 400 mg/kg, which resulted in a reduction in CFU counts of 1 log(10) greater than that with INH treatment, although the difference was not statistically significant. CFU counts from lung homogenates after 28 days of therapy were significantly lower in all treatment groups than in untreated controls. The weekly administration of MXF in doses ranging from 50 to 400 mg/kg resulted in no significant bactericidal activity. Mice receiving daily MXF doses of 200 and 400 mg/kg/day failed to gain weight and appeared ill after 28 days of therapy, findings suggestive of drug toxicity. In conclusion, MXF has dose-dependent bactericidal activity against M. tuberculosis in the mouse when given in doses up to 400 mg/kg, where its pharmacokinetic profile better approximates that of standard human dosages. Combination regimens which take advantage of the enhanced pharmacodynamic profile of MXF at these doses have the potential to shorten the course of antituberculous therapy or allow more intermittent (i.e., once-weekly) therapy and should be evaluated in the mouse model of TB.


Assuntos
Anti-Infecciosos/uso terapêutico , Compostos Aza , Fluoroquinolonas , Mycobacterium tuberculosis , Quinolinas , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/toxicidade , Contagem de Colônia Microbiana , Feminino , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Moxifloxacina , Baço/citologia , Análise de Sobrevida , Tuberculose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA