Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Med Chem ; 167: 312-323, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776693

RESUMO

Morphine is widely used for the treatment of severe pain. This analgesic effect is mediated principally by the activation of µ-opioid receptors (MOR). However, prolonged activation of MOR also results in tolerance, dependence, addiction, constipation, nausea, sedation, and respiratory depression. To address this problem, we sought alternative ways to activate MOR - either by use of novel ligands, or via a novel activation mechanism. To this end, a series of compounds were screened using a sensitive CHO-K1/MOR/Gα15 cell-based FLIPR® calcium high-throughput screening (HTS) assay, and the bithiazole compound 5a was identified as being able activate MOR in combination with naloxone. Structural modifications of 5a resulted in the discovery of lead compound 5j, which could effectively activate MOR in combination with the MOR antagonist naloxone or naltrexone. In vivo, naloxone in combination with 100 mg/kg of compound 5j elicited antinociception in a mouse tail-flick model with an ED50 of 17.5 ±â€¯4 mg/kg. These results strongly suggest that the mechanism by which the 5j/naloxone combination activates MOR is worthy of further study, as its discovery has the potential to yield an entirely novel class of analgesics.


Assuntos
Analgésicos/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides mu/agonistas , Tiazóis/farmacologia , Aminas , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Muridae , Antagonistas de Entorpecentes/farmacologia , Relação Estrutura-Atividade
2.
Eur J Med Chem ; 126: 202-217, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27776274

RESUMO

µ-Opioid receptor (MOR) agonists are analgesics used clinically for the treatment of moderate to severe pain, but their use is associated with severe adverse effects such as respiratory depression, constipation, tolerance, dependence, and rewarding effects. In this study, we identified N-({2-[(4-bromo-2-trifluoromethoxyphenyl)sulfonyl]-1,2,3,4-tetrahydro-1-isoquinolinyl}methyl)cyclohexanecarboxamide (1) as a novel opioid receptor agonist by high-throughput screening. Structural modifications made to 1 to improve potency and blood-brain-barrier (BBB) penetration resulted in compounds 45 and 46. Compound 45 was a potent MOR/KOR (κ-opioid receptor) agonist, and compound 46 was a potent MOR and medium KOR agonist. Both 45 and 46 demonstrated a significant anti-nociceptive effect in a tail-flick test performed in wild type (WT) B6 mice. The ED50 value of 46 was 1.059 mg/kg, and the brain concentrations of 45 and 46 were 7424 and 11696 ng/g, respectively. Accordingly, compounds 45 and 46 are proposed for lead optimization and in vivo disease-related pain studies.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Benzamidas/química , Benzamidas/farmacologia , Receptores Opioides mu/metabolismo , Adenilil Ciclases/metabolismo , Analgésicos/síntese química , Analgésicos/metabolismo , Animais , Benzamidas/síntese química , Benzamidas/metabolismo , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Masculino , Camundongos , Simulação de Dinâmica Molecular , Conformação Proteica , Receptores Opioides mu/química , Relação Estrutura-Atividade
3.
J Med Chem ; 58(19): 7807-19, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26348881

RESUMO

A structure-based virtual screening strategy, comprising homology modeling, ligand-support binding site optimization, virtual screening, and structure clustering analysis, was developed and used to identify novel tryptophan 2,3-dioxygenase (TDO) inhibitors. Compound 1 (IC50 = 711 nM), selected by virtual screening, showed inhibitory activity toward TDO and was subjected to structural modifications and molecular docking studies. This resulted in the identification of a potent TDO selective inhibitor (11e, IC50 = 30 nM), making it a potential compound for further investigation as a cancer therapeutic and other TDO-related targeted therapy.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade , Triptofano Oxigenase/antagonistas & inibidores , Sítios de Ligação , Bases de Dados de Compostos Químicos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Triazóis/química , Triptofano Oxigenase/química , Triptofano Oxigenase/metabolismo
4.
Anal Chem ; 84(15): 6391-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22712523

RESUMO

Recent studies have shown that NP (nucleoprotein), which possesses multiple functions in the viral life cycle, is a new potential anti-influenza drug target. NP inhibitors reliably induce conformational changes in NPs, and these changes may confer inhibition of the influenza virus. The six conserved tryptophan residues in NP can be used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residues in the protein upon binding to an NP inhibitor. In the present study, we found that the fluorescence of recombinant NP proteins was quenched following the binding of available NP inhibitors (such as nucleozin) in a concentration- and time-dependent manner, which suggests that the inhibitor induced conformational changes in the NPs. The minimal fluorescence-quenching effect and weak binding constant of nucleozin to the swine-origin influenza virus H1N1pdm09 (SOIV) NP revealed that the SOIV is resistant to nucleozin. We have used the fluorescence-quenching property of tryptophans in NPs that were bound to ligands in a 96-well-plate-based drug screen to assess the ability of promising small molecules to interact with NPs and have identified one new anti-influenza drug, CSV0C001018, with a high SI value. This convenient method for drug screening may facilitate the development of antiviral drugs that target viruses other than the influenza virus, such as HIV and HBV.


Assuntos
Vírus da Influenza A Subtipo H1N1/metabolismo , Nucleoproteínas/antagonistas & inibidores , Espectrometria de Fluorescência , Triptofano/química , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/farmacologia , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA