Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 10(4): e0124056, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884707

RESUMO

Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various ß-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the ß-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.


Assuntos
Alcaligenes/enzimologia , Aldeído Liases/química , Proteínas de Bactérias/química , Acetaldeído/metabolismo , Alanina Racemase/química , Alanina Racemase/genética , Alcaligenes/genética , Aldeído Liases/genética , Aldeído Liases/isolamento & purificação , Aldeído Liases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli , Glicina/biossíntese , Manganês/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Família Multigênica , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Serina/análogos & derivados , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Treonina/metabolismo
2.
FEBS J ; 281(20): 4691-4704, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25143260

RESUMO

Human NAD(P)H: quinone oxidoreductase 1 (NQO1) is essential for the antioxidant defense system, stabilization of tumor suppressors (e.g. p53, p33, and p73), and activation of quinone-based chemotherapeutics. Overexpression of NQO1 in many solid tumors, coupled with its ability to convert quinone-based chemotherapeutics into potent cytotoxic compounds, have made it a very attractive target for anticancer drugs. A naturally occurring single-nucleotide polymorphism (C609T) leading to an amino acid exchange (P187S) has been implicated in the development of various cancers and poor survival rates following anthracyclin-based adjuvant chemotherapy. Despite its importance for cancer prediction and therapy, the exact molecular basis for the loss of function in NQO1 P187S is currently unknown. Therefore, we solved the crystal structure of NQO1 P187S. Surprisingly, this structure is almost identical to NQO1. Employing a combination of NMR spectroscopy and limited proteolysis experiments, we demonstrated that the single amino acid exchange destabilized interactions between the core and C-terminus, leading to depopulation of the native structure in solution. This collapse of the native structure diminished cofactor affinity and led to a less competent FAD-binding pocket, thus severely compromising the catalytic capacity of the variant protein. Hence, our findings provide a rationale for the loss of function in NQO1 P187S with a frequently occurring single-nucleotide polymorphism. DATABASE: Structural data are available in the Protein Data Bank under the accession numbers 4cet (P187S variant with dicoumarol) and 4cf6 (P187S variant with Cibacron blue). STRUCTURED DIGITAL ABSTRACT: NQO1 P187S and NQO1 P187S bind by nuclear magnetic resonance (View interaction) NQO1 P187S and NQO1 P187S bind by x-ray crystallography (1, 2) NQO1 and NQO1 bind by molecular sieving (1, 2).


Assuntos
NAD(P)H Desidrogenase (Quinona)/química , Polimorfismo Genético/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Dados de Sequência Molecular , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA