Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM | ID: wpr-64404

RESUMO

BACKGROUND: This study investigates the effect of alendronate-treated osteoblasts, as well as the effect of low-level laser therapy (LLLT) on the alendronate-treated osteoblasts. Bisphosphonate decreases the osteoblastic activity. Various treatment modalities are used to enhance the bisphosphonate-treated osteoblasts; however, there were no cell culture studies conducted using a low-level laser. METHODS: Human fetal osteoblastic (hFOB 1.19) cells were treated with 50 μM alendronate. Then, they were irradiated with a 1.2 J/cm² low-level Ga-Al-As laser (λ = 808 ± 3 nm, 80 mW, and 80 mA; spot size, 1 cm²; NDLux, Seoul, Korea). The cell survivability was measured with the MTT assay. The three cytokines of osteoblasts, receptor activator of nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF) were analyzed. RESULTS: In the cells treated with alendronate at concentrations of 50 μM and higher, cell survivability significantly decreased after 48 h (p < 0.05). After the applications of low-level laser on alendronate-treated cells, cell survivability significantly increased at 72 h (p < 0.05). The expressions of OPG, RANKL, and M-CSF have decreased via the alendronate. The RANKL and M-CSF expressions have increased, but the OPG was not significantly affected by the LLLT. CONCLUSIONS: The LLLT does not affect the OPG expression in the hFOB cell line, but it may increase the RANKL and M-CSF expressions, thereby resulting in positive effects on osteoclastogenesis and bone remodeling.


Assuntos
Humanos , Alendronato , Remodelação Óssea , Técnicas de Cultura de Células , Linhagem Celular , Citocinas , Terapia com Luz de Baixa Intensidade , Fator Estimulador de Colônias de Macrófagos , Osteoblastos , Osteoprotegerina , Seul
4.
Artigo em Coreano | WPRIM | ID: wpr-209485

RESUMO

INTRODUCTION: The first aim of this study was to isolate the dental tissue-derived stem cells from the dental follicle (DF), dental pulp (DP), and root apical papilla (RAP) of the extracted wisdom teeth. Second was to evaluate their characterization with the expressions of transcription factors and cell surface markers. Finally, their ability of the in vitro multi-lineage differentiations into osteogenic and adipogenic cells were compared, respectively. MATERIALS AND METHODS: Dental tissues, including dental follicle, dental pulp, and root apical papilla, were separated in the extracted wisdom teeth. These three dental tissues were cultured in Dulbecco's modified Eagle's medium (DMEM) with supplements, respectively. After passage 3, the homogeneous shaped dental tissue-derived cells were analyzed the expression of transcription factors (Oct-4, Nanog and Sox-2) and cell surface markers (CD44, CD90 and CD105) with reverse transcription polymerase chain reaction (RT-PCR) and fluorescence-activated cell sorting (FACS) analysis. In order to evaluate in vitro multi-lineage differentiations, the culture media were changed to the osteogenic and adipogenic induction mediums when the dental tissue-derived cells reached to passage 3. The characteristics of these three dental tissue-derived cells were compared with immunohistochemistry. RESULTS: During primary culture, heterogenous and colony formatted dental tissue-derived cells were observed in the culture plates. After passage 2 or 3, homogenous spindle-like cells were observed in all culture plates. Transcription factors and mesenchymal stem cell markers were positively observed in all three types of dental tissue-derived cells. However, the quantity of expressed transcription factors was most large in RAP-derived cells. In all three types of dental tissue-derived cells, osteogenic and adipogenic differentiations were observed after treatment of specific induction media. In vitro adipogenic differentiation was similar among these three types of cells. In vitro osteogenic differentiation was most strongly and frequently observed in the RAP-derived cells, whereas rarely osteogenic differentiation was observed in the DP-derived cells. CONCLUSION: These findings suggest that three types of human dental tissue-derived cells from extracted wisdom teeth were multipotent mesenchymal stem cells, have the properties of multi-lineage differentiations. Especially, stem cells from root apical papilla (SCAP) have much advantage in osteogenic differentiation, whereas dental follicle cells (DFCs) have a characteristic of easy adipogenic differentiation.


Assuntos
Humanos , Meios de Cultura , Polpa Dentária , Saco Dentário , Durapatita , Citometria de Fluxo , Imidazóis , Imuno-Histoquímica , Células-Tronco Mesenquimais , Dente Serotino , Nitrocompostos , Reação em Cadeia da Polimerase , Transcrição Reversa , Células-Tronco , Fatores de Transcrição
5.
Artigo em Coreano | WPRIM | ID: wpr-84229

RESUMO

PURPOSE : The purpose of this study was to examine the expression of various angiogenic factors during osteoblastic differentiation of periostealderived cells and the effects of osteogenic inductive medium of periosteal-derived cells on the proliferation of endothelial progenitor cells. MATERIALS AND METHODS : Periosteal-derived cells were obtained from mandibular periosteums and introduced into the cell culture. After passage 3, the cells were divided into two groups and cultured for 21 days. In one group, the cells were cultured in the DMEM supplemented with osteogenic inductive agent, including 50g/ml L-ascorbic acid 2-phosphate, 10 nM dexamethasone and 10 mM -glycerophosphate. In the other group, they were cultured in DMEM supplemented without osteogenic inductive agent. VEGF isoforms, VEGFR-1, VEGFR-2, and neuropilin-1 mRNA expression was observed. Human umbilical cord blood-derived endothelial progenitor cell proliferation was also observed. RESULTS : The expression of VEGF isoforms was higher in osteogenic inductive medium than in non-osteogenic inductive medium. The expression of VEGFR-2 was also higher in osteogenic inductive medium than in non-osteogenic inductive medium. However, the expression of VEGFR-1 and neuropilin-1 was similar in both osteogenic inductive medium and non-osteogenic inductive medium. In addition, conditioned medium from differentiated periosteal-derived cells stimulated human umbilical cord blood-derived endothelial progenitor cell numbers compared to conditioned medium from non-differentiated periosteal-derived cells. CONCLUSION : These results suggest that in vitro osteoblastic differentiation of periosteal-derived cells has angiogenic capacity to support endothelial progenitor cell numbers.


Assuntos
Humanos , Indutores da Angiogênese , Ácido Ascórbico , Técnicas de Cultura de Células , Meios de Cultivo Condicionados , Dexametasona , Durapatita , Neuropilina-1 , Osteoblastos , Periósteo , Isoformas de Proteínas , RNA Mensageiro , Células-Tronco , Cordão Umbilical , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
6.
Artigo em Coreano | WPRIM | ID: wpr-101907

RESUMO

PURPOSE: The purpose of this study was to observe the effect of calcium and vitamin D to the titanium implant osseointegration in the osteoporosis-induced animal model. MATERIAL AND METHOD: Thirty-two rats, 10 weeks of age, were divided into two groups: experimental group was ingested additional calcium and vitamin D, and a control group was not. Titanium screw implant(diameter, 2.0 mm; length, 3.5 mm; pitch-height 0.4 mm) were placed into tibia of 32 rats, 16 in the control group and 16 in the experimental group. The rats were sacrificed at 1, 2, 4 and 8 weeks after implantation for histopathologic examination, histomorphometric analysis and immunohistochemistry with fibronectin and collagen type I antibody. RESULT: In histopathological findings, newly formed bone was seen at 2 weeks and became lamellar bone at 4 weeks, and mature trabecullar bone was seen at 8 weeks in experimental group. In control group, thickness of regenerated bone increased till 4 weeks gradually and trabecullar bone was seen at 8 weeks. In histomorphometric analysis, marrow bone density increased significantly in experimental group compared to control group. Fibronectin immunoreactivity was strong at 2 weeks in experimental group and reduced after 4 weeks gradually. But it was maintained continuously from 2 to 8 weeks in control group. Collagen type I immunoreactivity was very strong from 2 to 4 week in experimental group. And the amount of Collagen type I expression was more abundant in experimental group. CONCLUSION: The results of this study suggest that calcium and vitamin D supplementation promote bone healing around titanium implants in osteoporosis induced animals.


Assuntos
Animais , Ratos , Densidade Óssea , Medula Óssea , Cálcio , Colágeno Tipo I , Fibronectinas , Imuno-Histoquímica , Modelos Animais , Osseointegração , Osteogênese , Osteoporose , Tíbia , Titânio , Vitamina D , Vitaminas
7.
Artigo em Coreano | WPRIM | ID: wpr-202197

RESUMO

The purpose of this study was to observe the effect of calcium and vitamin D to the titanium implant osseointegration in animal model. 32 rats, 10 weeks of age, were divided into two group: additional calcium and vitamin D supplementation group and a control group. Titanium screw implant(diameter, 2.0mm; length, 3.5mm; pitch-height 0.4 mm) were placed into tibia of 32 rats, 16 in the control group and 16 in the experimental group. The rats were sacrificed at different time interval(1, 2, 4, and 8 weeks after implantation) for histopathologic observation, histomorphometric analysis and immunohistochemistry with osteocalcin and osteopontin antibody. Histopathologically findings, newly formed bone was seen at 1 weeks and became lamellar bone at 2 weeks, and mature trabecullar bone was seen at 4 weeks experimental group. In control group, thickness of regenerated bone increased till 4 weeks gradually and trabecullar bone was seen at 8 weeks. By histomorphometric analysis, bone marrow density was increased significantly at 1 and 2 weeks in experimental group compared to control group. Osteocalcin immunoreactivity was strong at 1 week experimental group and reduced after 4 weeks gradually. But it was continuously weakly from 1 to 4 weeks in control group. Osteopontin immunoreactivity was very strong in newly formed bone from 2 to 8 weeks experimental group. And the amount of osteopontin expression was more abundant in experimental group. The results of this study suggest that calcium and vitamin D supplementation promotes bone healing around dental implants.


Assuntos
Animais , Ratos , Medula Óssea , Cálcio , Implantes Dentários , Imuno-Histoquímica , Modelos Animais , Osseointegração , Osteocalcina , Osteogênese , Osteopontina , Tíbia , Titânio , Vitamina D
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA