Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell Environ ; 47(4): 1238-1254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173082

RESUMO

The evolution of land flora was an epochal event in the history of planet Earth. The success of plants, and especially flowering plants, in colonizing all but the most hostile environments required multiple mechanisms of adaptation. The mainly polysaccharide-based cell walls of flowering plants, which are indispensable for water transport and structural support, are one of the most important adaptations to life on land. Thus, development of vasculature is regarded as a seminal event in cell wall evolution, but the impact of further refinements and diversification of cell wall compositions and architectures on radiation of flowering plant families is less well understood. We approached this from a glyco-profiling perspective and, using carbohydrate microarrays and monoclonal antibodies, studied the cell walls of 287 plant species selected to represent important evolutionary dichotomies and adaptation to a variety of habitats. The results support the conclusion that radiation of flowering plant families was indeed accompanied by changes in cell wall fine structure and that these changes can obscure earlier evolutionary events. Convergent cell wall adaptations identified by our analyses do not appear to be associated with plants with similar lifestyles but that are taxonomically distantly related. We conclude that cell wall structure is linked to phylogeny more strongly than to habitat or lifestyle and propose that there are many approaches of adaptation to any given ecological niche.


Assuntos
Plantas , Polissacarídeos , Polissacarídeos/análise , Filogenia , Plantas/química , Parede Celular/química , Pectinas/análise , Evolução Biológica
2.
Carbohydr Polym ; 261: 117866, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766354

RESUMO

Almost all plant cells are surrounded by a wall constructed of co-extensive networks of polysaccharides and proteoglycans. The capability to analyse cell wall components is essential for both understanding their complex biology and to fully exploit their numerous practical applications. Several biochemical and immunological techniques are used to analyse cell walls and in almost all cases the first step is the preparation of an alcohol insoluble residue (AIR). There is significant variation in the protocols used for AIR preparation, which can have a notable impact on the downstream extractability and detection of cell wall components. To explore these effects, we have formally compared ten AIR preparation methods and analysed polysaccharides subsequently extracted using high-performance anion exchange chromatography (HPAEC-PAD) and Micro Array Polymer Profiling (MAPP). Our results reveal the impact that AIR preparation has on downstream detection of cell wall components and the need for optimisation and consistency when preparing AIR.


Assuntos
Parede Celular/química , Técnicas de Química Analítica/métodos , Células Vegetais/química , Polissacarídeos/isolamento & purificação , Arabidopsis/química , Membrana Celular/química , Cromatografia/métodos , Análise em Microsséries , Folhas de Planta/química , Preparações de Plantas/isolamento & purificação , Caules de Planta/química , Polímeros/análise , Polímeros/isolamento & purificação , Polissacarídeos/química , Nicotiana/química
3.
Carbohydr Polym ; 253: 117277, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278948

RESUMO

Thermoplastic, polysaccharide-based plastics are environmentally friendly. However, typical shortcomings include lack of water resistance and poor mechanical properties. Nanocomposite manufacturing using pure, highly linear, polysaccharides can overcome such limitations. Cast nanocomposites were fabricated with plant engineered pure amylose (AM), produced in bulk quantity in transgenic barley grain, and cellulose nanofibers (CNF), extracted from agrowaste sugar beet pulp. Morphology, crystallinity, chemical heterogeneity, mechanics, dynamic mechanical, gas and water permeability, and contact angle of the films were investigated. Blending CNF into the AM matrix significantly enhanced the crystallinity, mechanical properties and permeability, whereas glycerol increased elongation at break, mainly by plasticizing the AM. There was significant phase separation between AM and CNF. Dynamic plasticizing and anti-plasticizing effects of both CNF and glycerol were demonstrated by NMR demonstrating high molecular order, but also non-crystalline, and evenly distributed 20 nm-sized glycerol domains. This study demonstrates a new lead in functional polysaccharide-based bioplastic systems.


Assuntos
Amilose/química , Plásticos Biodegradáveis/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Extratos Vegetais/química , Amilose/isolamento & purificação , Beta vulgaris/química , Celulose/isolamento & purificação , Cristalização , Farinha , Glicerol/química , Hordeum/química , Permeabilidade , Plastificantes/química , Maleabilidade , Amido/química , Resistência à Tração , Temperatura de Transição
4.
Carbohydr Polym ; 230: 115581, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887882

RESUMO

Removal of non-cellulosic polymers from vegetable pulp to obtain cellulose nanofibers (CNF) is normally achieved by chemical pre-treatments which requires several washing steps. In the present study, it is demonstrated how incubation of sugar beet pulp at pH 9, followed by treatment with polysaccharide-degrading enzymes and subsequent bleaching can be done in a one-pot procedure to make CNF. The new method consumes 67% less water and removes non-cellulosic polysaccharides with similar efficiency as a chemical method. In addition, CNF produced by the new method contained slightly more pectin and formed gels with 2.7 times higher storage modulus. Nanopapers cast from chemically- and enzymatically produced CNF showed similar mechanical properties. However, without the pH 9 incubation step, the enzymes accessibility to cell-wall polymers was limited resulting in lower gel and paper strengths. In conclusion, the new method offers a sustainable route for producing high quality CNF from sugar beet waste.


Assuntos
Beta vulgaris/química , Celulose/química , Géis/química , Nanofibras/química , Celulose/síntese química , Géis/síntese química , Humanos , Pectinas/química , Polímeros/química , Resíduos Sólidos , Açúcares/química , Verduras/química
5.
Biomacromolecules ; 20(1): 443-453, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30525515

RESUMO

Cellulose fibers can be freed from the cell-wall skeleton via high-shear homogenization, to produce cellulose nanofibers (CNF) that can be used, for example, as the reinforcing phase in composite materials. Nanofiber production from agro-industrial byproducts normally involves harsh chemical-pretreatments and high temperatures to remove noncellulosic polysaccharides (20-70% of dry weight). However, this is expensive for large-scale processing and environmentally damaging. An enzyme-only pretreatment to obtain CNF from agro-industrial byproducts (potato and sugar beet) was developed with targeted commercial enzyme mixtures. It is hypothesized that cellulose can be isolated from the biomass, using enzymes only, due to the low lignin content, facilitating greater liberation of CNF via high-shear homogenization. Comprehensive Microarray Polymer Profiling (CoMPP) measured remaining extractable polysaccharides, showing that the enzyme-pretreatment was more successful at removing noncellulosic polysaccharides than alkaline- or acid-hydrolysis alone. While effective alone, the effect of the enzyme-pretreatment was bolstered via combination with a mild high-pH pretreatment. Dynamic rheology was used to estimate the proportion of CNF in resultant suspensions. Enzyme-pretreated suspensions showed 4-fold and 10-fold increases in the storage modulus for potato and sugar beet, respectively, compared to untreated samples. A greener yet facile method for producing CNF from vegetable waste is presented here.


Assuntos
Biotecnologia/métodos , Celulose/análogos & derivados , Resíduos Industriais , Nanofibras/química , Verduras/química , Beta vulgaris/química , Biocatálise , Hidrólise , Solanum tuberosum/química
6.
Nat Plants ; 4(9): 635-636, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082765
7.
PLoS One ; 11(12): e0168050, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992455

RESUMO

Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 µm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.


Assuntos
Cápsulas/síntese química , Pectinas/farmacocinética , Animais , Cápsulas/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos , Tamanho da Partícula , Solanum tuberosum/química
8.
Plant Biotechnol J ; 12(4): 492-502, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24428422

RESUMO

Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes encoding enzymes involved in pectin acetylation, degradation of the rhamnogalacturonan backbone and type and length of neutral side chains, arabinan and galactan in particular, has been altered. Upon crossing of different transgenic lines, some transgenes were not transmitted to the next generation when these lines were used as a pollen donor, suggesting male sterility. Viability of mature pollen was severely decreased in potato lines with reduced pectic arabinan, but not in lines with altered galactan side chains. Anthers and pollen of different developmental stages were microscopically examined to study the phenotype in more detail. Scanning electron microscopy of flowers showed collapsed pollen grains in mature anthers and in earlier stages cytoplasmic protrusions at the site of the of kin pore, eventually leading to bursting of the pollen grain and leaking of the cytoplasm. This phenomenon is only observed after the microspores are released and the tapetum starts to degenerate. Timing of the phenotype indicates a role for pectic arabinan side chains during remodelling of the cell wall when the pollen grain is maturing and dehydrating.


Assuntos
Parede Celular/metabolismo , Pectinas/metabolismo , Pólen/citologia , Pólen/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Solanum tuberosum/citologia , Segregação de Cromossomos , Cruzamentos Genéticos , Dosagem de Genes , Monossacarídeos/metabolismo , Fenótipo , Infertilidade das Plantas/genética , Tubérculos/citologia , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Pólen/anatomia & histologia , Pólen/ultraestrutura , Solanum tuberosum/genética , Solanum tuberosum/ultraestrutura , Transformação Genética , Transgenes/genética
9.
J Biomed Mater Res A ; 102(6): 1961-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23852647

RESUMO

Osseointegration is important when implants are inserted into the bone and can be improved by biochemical surface coating of the implant. In this paper enzymatically modified rhamnogalacturonan I (RG-I) from apple and lupin was used for biochemical coating of aminated surfaces and the importance of the quality of RG-I, the nature of the binding, the fine structure of RG-I, and its effect on SaOS-2 cell line cultured on coated surfaces was investigated. SaOS-2 cells are osteoblast-like cells and a well-established in vitro model of bone-matrix forming osteoblasts. Purification by gel filtration could remove small fragments of galacturonic acid (GalA) and binding studies showed that the purity of the RG-I molecules was important for the quality of the coating. The structure of RG-I and osteoblast-like cells' viability were positively correlated so that high content of 1,4-linked galactose (Gal) and a low content of arabinose in the RG-I molecules favored cell viability. These results indicate that coating of implants with RG-I affect osseointegration positively.


Assuntos
Materiais Revestidos Biocompatíveis/química , Osteoblastos/citologia , Pectinas/química , Linhagem Celular , Sobrevivência Celular , Implantes Dentários , Humanos , Lupinus/química , Malus/química
10.
Planta ; 236(1): 185-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22293853

RESUMO

A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.


Assuntos
Parede Celular/metabolismo , Esterases/metabolismo , Tubérculos/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Acetilação , Fabaceae/enzimologia , Fabaceae/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pectinas/metabolismo , Plantas Geneticamente Modificadas , Estresse Mecânico
11.
J Biomed Mater Res A ; 100(3): 654-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213456

RESUMO

Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the methods used to improve osseointegration. Therefore, the aim of this study is to evaluate the in vitro effect of nanocoating with pectic rhamnogalacturonan-I (RG-I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy. The effects of nanocoating on proliferation, matrix formation and mineralization, and expression of genes (real-time PCR) related to osteoblast differentiation and activity were tested using human osteoblast-like SaOS-2 cells. It was shown that RG-I coatings affected the surface properties. All three RG-I induced bone matrix formation and mineralization, which was also supported by the finding that gene expression levels of alkaline phosphatase, osteocalcin, and collagen type-1 were increased in cells cultured on the RG-I coated surface, indicating a more differentiated osteoblastic phenotype. This makes RG-I coating a promising and novel candidate for nanocoatings of implants.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanoestruturas/química , Osteoblastos/fisiologia , Pectinas/química , Próteses e Implantes , Animais , Linhagem Celular , Materiais Revestidos Biocompatíveis/metabolismo , Humanos , Lupinus/química , Malus/química , Teste de Materiais , Microscopia de Força Atômica , Estrutura Molecular , Osseointegração , Osteoblastos/citologia , Pectinas/metabolismo , Espectroscopia Fotoeletrônica , Propriedades de Superfície
12.
J Biomed Mater Res A ; 100(1): 111-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21997868

RESUMO

Pectins, complex plant-derived polysaccharides, are novel candidates for biomaterial nanocoatings. Pectic rhamnogalacturonan-I regions (RG-I) can be enzymatically treated to so-called modified hairy regions (MHR). We surveyed the growth and differentiation of murine preosteoblastic MC3T3-E1 cells on Petri dishes coated with RG-Is from native or genetically engineered potato tubers. Uncoated tissue culture polystyrene (TCPS) and aminated (AMI) dishes served as controls. MHRPTR_GAL sample was depleted of galactose (9 mol % galactose; 23 mol % arabinose) and MHRPTR_ARA of arabinose (61 mol % galactose; 6 mol % arabinose). Wild-type (modified hairy region from potato pectin (MHRP)_WT) fragment contained default amounts (58 mol % galactose; 13 mol % arabinose) of both sugars. Focal adhesions (FAs) indicating cellular attachment were quantified. Reverse transcriptase polymerase chain reaction (RT-PCR) of alkaline phosphatase and osteocalcin genes indicating osteoblastic differentiation was performed along with staining the produced calcium with tetracycline as an indicator of osteoblastic differentiation. Osteoblasts proliferated on all the samples to some extent. The control surfaces performed better than any of the pectin samples, of which the MHRP_WT seemed to function best. FA length was greater on MHRPTR_GAL than on other pectin samples, otherwise the mutants did not significantly deviate. RT-PCR results indicate that differences between the samples at the gene expression level might be even subtler. However, tetracycline-stained calcium-containing mineral was detected merely only on uncoated TCPS. These results indicate the possibility to affect bone cell growth with in vivo-modified pectin fragments, consecutively providing information on the significance of certain monosaccharides on the biocompatibility of these polysaccharides.


Assuntos
Engenharia Genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Pectinas/farmacologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Animais , Carboidratos/análise , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia em Gel , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Camundongos , Microscopia Confocal , Osteoblastos/citologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Phytochemistry ; 72(11-12): 1466-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21543095

RESUMO

Marama bean (Tylosema esculentum) is an important component of the diet around the Kalahari Desert in Southern Africa where this drought resistant plant can grow. The marama bean contains roughly 1/3 proteins, 1/3 lipids and 1/3 carbohydrates, but despite its potential as dietary supplement little is known about the carbohydrate fraction. In this study the carbohydrate fraction of "immature" and "mature" marama seeds are characterised. The study shows that the marama bean contains negligible amounts of starch and soluble sugars, both far less than 1%. The cell wall is characterised by a high arabinose content and a high resistance to extraction as even a 6M NaOH extraction was insufficient to extract considerable amounts of the arabinose. The arabinose fraction was characterised by arabinan-like linkages and recognised by the arabinan antibody LM6 and LM13 indicating that it is pectic arabinan. Two pools of pectin could be detected; a regular CDTA (1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid) or enzymatically extractable pectin fraction and a recalcitrant pectin fraction containing the majority of the arabinans, of which about 40% was unextractable using 6M NaOH. Additionally, a high content of mannose was observed, possibly from mannosylated storage proteins.


Assuntos
Arabinose/química , Fabaceae/química , Sementes/química , Parede Celular/química , Fracionamento Químico , Ácido Edético/análogos & derivados , Ácido Edético/química , Fabaceae/crescimento & desenvolvimento , Glicosilação , Hidrólise , Pectinas/química , Proteínas de Plantas/química , Sementes/crescimento & desenvolvimento , Solubilidade
14.
Biomacromolecules ; 12(5): 1844-50, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21462966

RESUMO

Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by (13)C single-pulse (SP) magic-angle-spinning (MAS) and (13)C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by (2)H SP/MAS NMR experiments. The study shows that the arabinan side chains hydrate more readily than the galactan side chains and suggests that the overall hydration properties can be controlled by modifying the ratio of these side chains. Enzymatic modification of native (NA) RG-I provided samples with reduced content of arabinan (sample DA), galactan (sample DG), or both side chains (sample DB). Results of these samples suggested that hydration properties were determined by the length and character of the side chains. NA and DA exhibited similar hydration characteristics, whereas DG and DB were difficult to hydrate because of the less hydrophilic properties of the rhamnose-galacturonic acid (Rha-GalA) backbone in RG-I. Potential food ingredient uses of RG-I by tailoring of its structure are discussed.


Assuntos
Parede Celular/química , Espectroscopia de Ressonância Magnética/métodos , Pectinas/química , Solanum tuberosum/química , Água/química , Isótopos de Carbono
15.
Plant Physiol ; 155(1): 246-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21075961

RESUMO

Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant's ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure.


Assuntos
Parede Celular/fisiologia , Solanum tuberosum/citologia , Teorema de Bayes , Fenômenos Biomecânicos/fisiologia , Elasticidade , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Tubérculos/fisiologia , Reologia , Solanum tuberosum/fisiologia , Estresse Mecânico
16.
Transgenic Res ; 18(6): 961-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19544083

RESUMO

Despite the wide occurrence of pectin in nature only a few source materials have been used to produce commercial pectins. One of the reasons for this is that many plant species contain pectins with high levels of neutral sugar side chains or that are highly substituted with acetyl or other groups. These modifications often prevent gelation, which has been a major functional requirement of commercial pectins until recently. We have previously shown that modification of pectin is possible through heterologous expression of pectin degrading enzymes in planta. To test the effect of simultaneous modification of the two main neutral pectic side chains in pectic rhamnogalacturonan I (RGI), we constitutively expressed two different enzymes in Arabidopsis thaliana that would either modify the galactan or the arabinan side chains, or both side chains simultaneously. Our analysis showed that the simultaneous truncation of arabinan and galactan side chains is achievable and does not severely affect the growth of Arabidopsis thaliana.


Assuntos
Arabidopsis/genética , Pectinas/metabolismo , Polissacarídeo-Liases/metabolismo , Arabidopsis/enzimologia , Galactanos/metabolismo , Pectinas/química , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Polissacarídeo-Liases/genética , Polissacarídeos/metabolismo
17.
FEBS Lett ; 582(21-22): 3217-22, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18755189

RESUMO

An Arabidopsis thaliana gene, At1g56550, was expressed in Pichia pastoris and the recombinant protein was shown to catalyse transfer of D-xylose from UDP-alpha-D-xylose onto methyl alpha-L-fucoside. The product formed was shown by 1D and 2D 1H NMR spectroscopy to be Me alpha-D-Xyl-(1,3)-alpha-L-Fuc, which is identical to the proposed target structure in the A-chain of rhamnogalacturonan II. Chemically synthesized methyl L-fucosides derivatized by methyl groups on either the 2-, 3- or 4 position were tested as acceptor substrates but only methyl 4-O-methyl-alpha-L-fucopyranoside acted as an acceptor, although to a lesser extent than methyl alpha-L-fucoside. At1g56550 is suggested to encode a rhamnogalacturonan II specific xylosyltransferase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Pectinas/metabolismo , Pentosiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Clonagem Molecular , Fucose/metabolismo , Genes de Plantas , Pentosiltransferases/classificação , Pentosiltransferases/genética , Filogenia , Pichia/genética , Especificidade por Substrato , UDP Xilose-Proteína Xilosiltransferase
18.
Plant Cell ; 18(10): 2593-607, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17056709

RESUMO

Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-alpha-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative of a type II membrane protein structure. Soluble secreted forms of the corresponding proteins expressed in insect cells showed xylosyltransferase activity, transferring d-xylose from UDP-alpha-d-xylose to l-fucose. The disaccharide product was hydrolyzed by alpha-xylosidase, whereas no reaction was catalyzed by beta-xylosidase. Furthermore, the regio- and stereochemistry of the methyl xylosyl-fucoside was determined by nuclear magnetic resonance to be an alpha-(1,3) linkage, demonstrating the isolated glycosyltransferases to be (1,3)-alpha-d-xylosyltransferases. This particular linkage is only known in rhamnogalacturonan-II, a complex polysaccharide essential to vascular plants, and is conserved across higher plant families. Rhamnogalacturonan-II isolated from both RGXT1 and RGXT2 T-DNA insertional mutants functioned as specific acceptor molecules in the xylosyltransferase assay. Expression of RGXT1- and RGXT2-enhanced green fluorescent protein constructs in Arabidopsis revealed that both fusion proteins were targeted to a Brefeldin A-sensitive compartment and also colocalized with the Golgi marker dye BODIPY TR ceramide, consistent with targeting to the Golgi apparatus. Taken together, these results suggest that RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-d-xylosyltransferases involved in the biosynthesis of pectic rhamnogalacturonan-II.


Assuntos
Proteínas de Arabidopsis/genética , Complexo de Golgi/enzimologia , Isoenzimas/genética , Pectinas/biossíntese , Pentosiltransferases/genética , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Baculoviridae/genética , Sequência de Bases , Primers do DNA , Insetos , Isoenzimas/química , Isoenzimas/metabolismo , Dados de Sequência Molecular , Pentosiltransferases/química , Pentosiltransferases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , UDP Xilose-Proteína Xilosiltransferase
19.
Planta ; 220(4): 609-20, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15517357

RESUMO

Two lines of transgenic potato (Solanum tuberosum L.) plants modified in their cell wall structure were characterized and compared to wild type with regard to biomechanical properties in order to assign functional roles to the particular cell wall polysaccharides that were targeted by the genetic changes. The targeted polymer was rhamnogalacturonan I (RG-I), a complex pectic polysaccharide comprised of mainly neutral oligosaccharide side chains attached to a backbone of alternating rhamnosyl and galacturonosyl units. Tuber rhamnogalacturonan I molecules from the two transformed lines are reduced in linear galactans and branched arabinans, respectively. The transformed tuber tissues were found to be more brittle when subjected to uniaxial compression and the side-chain truncation was found to be correlated with the physical properties of the tissue. Interpretation of the force-deflection curves was aided by a mathematical model that describes the contribution of the cellulose microfibrils, and the results lead to the proposition that the pectic matrix plays a role in transmitting stresses to the load-bearing cellulose microfibrils and that even small changes to the rheological properties of the matrix have consequences for the biophysical properties of the wall.


Assuntos
Pectinas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Cinética , Pectinas/química , Reologia , Especificidade da Espécie , Água/metabolismo
20.
Biomacromolecules ; 5(6): 2094-104, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15530022

RESUMO

Polystyrene Petri dishes, aminated by a plasma deposition process, were surface modified by the covalent linking of two different enzymatically modified hairy regions (HRs) from pectin containing, for example, rhamnogalacturonan-I and xylogalacturonan structural elements. The two polysaccharide preparations share the same structural elements of apple pectin, but the relative amounts and lengths of the neutral side chains present differ. Surface analysis by X-ray photoelectron spectroscopy, contact angle measurement, and atomic force microscope (AFM) force-separation curves was used to characterize the effects on surface chemistry and interfacial forces of the surface modification process. Cell adhesion experiments using continuous L-929 fibroblasts and primary aortic smooth muscle cells were performed to evaluate the effect of the polysaccharide nature on cell adhesion. Results show that immobilization of the HR affects the interfacial field of forces and the cell behavior: "equilibrium" contact angles, obtained by a recently introduced vibrational approach, decrease after HR immobilization reaching a value close to 20 degrees . AFM force-separation curves show a more extended (or softer) interface in the case of the HR bearing longer side chains. Accordingly, depending on the HR preparation, cells shifted from spread morphology and adhesion behavior quantitatively comparable to that observed on conventional tissue culture polystyrene to rounded morphology and significantly lower adhesion. These data show that engineering of plant pectins can be a valuable tool to prepare novel and finely tuned polysaccharides having different chemico-physical and biological properties, to be used in the surface modification of medical devices and materials.


Assuntos
Pectinas/química , Animais , Fenômenos Biofísicos , Biofísica , Biotecnologia , Sequência de Carboidratos , Adesão Celular , Técnicas de Cultura , Microanálise por Sonda Eletrônica , Fibroblastos/citologia , Ácidos Hexurônicos/química , Humanos , Substâncias Macromoleculares/química , Camundongos , Microscopia de Força Atômica , Dados de Sequência Molecular , Miócitos de Músculo Liso/citologia , Polissacarídeos/química , Poliestirenos/química , Espectrofotometria Infravermelho , Propriedades de Superfície , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA