Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(36): 12590-12598, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37651551

RESUMO

Despite advancements in contemporary therapies, cardiovascular disease from atherosclerosis remains a leading cause of mortality worldwide. Supported lipid bilayers (SLBs) are membrane interfaces that can be constructed with varying lipid compositions. Herein, we use a solvent-assisted lipid bilayer (SALB) construction method to build SLB membranes with varying cholesterol compositions to create a lipid-sterol interface atop a piezoelectric sensor. These cholesterol-laden SLBs were utilized to investigate the mechanisms of various cholesterol-lowering drug molecules. Within a flow-cell, membranes with varying cholesterol content were exposed to cyclodextrins 2-hydroxypropyl-beta-cyclodextrin (HPßCD) and methyl-beta-cyclodextrin (MßCD). Quartz-crystal microgravimetry with dissipation monitoring (QCM-D) enabled the collection of in vitro, real-time changes in relative areal mass and dissipation. We define the cholesterol desorbing competency of a cyclodextrin species via measures of the rate of cholesterol removal, the rate of the transfer of membrane-bound cholesterol to drug-complexed cholesterol, and the binding strength of the drug to the cholesterol-ladened membrane. Desorption data revealed distinct cholesterol removal kinetics for each cyclodextrin while also supporting a model for the lipid-cholesterol-drug interface. We report that MßCD removes a quantity of cholesterol 1.61 times greater, with a speed 2.12 times greater, binding affinity to DOPC lipid interfaces 1.97 times greater, and rate of internal cholesterol transfer 3.41 times greater than HPßCD.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Membranas Artificiais , 2-Hidroxipropil-beta-Ciclodextrina , Avaliação Pré-Clínica de Medicamentos , Bicamadas Lipídicas , Colesterol
2.
Biomaterials ; 120: 115-125, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28056401

RESUMO

Magnetic hyperthermia as a treatment modality is acquiring increased recognition for loco-regional therapy of primary and metastatic lung malignancies by pulmonary delivery of magnetic nanoparticles (MNP). The unique characteristic of magnetic nanoparticles to induce localized hyperthermia in the presence of an alternating magnetic field (AMF) allows for preferential killing of cells at the tumor site. In this study we demonstrate the effect of hyperthermia induced by low and high dose of MNP under the influence of an AMF using 3D tumor tissue analogs (TTA) representing the micrometastatic, perfusion independent stage of triple negative breast cancer (TNBC) that infiltrates the lungs. While application of inhalable magnetic nanocomposite microparticles or magnetic nanocomposites (MnMs) to the micrometastatic TNBC model comprised of TTA generated from cancer and stromal cells, showed no measureable adverse effects in the absence of AMF-exposure, magnetic hyperthermia generated under the influence of an AMF in TTA incubated in a high concentration of MNP (1 mg/mL) caused significant increase in cellular death/damage with mechanical disintegration and release of cell debris indicating the potential of these inhalable composites as a promising approach for thermal treatment of diseased lungs. The novelty and significance of this study lies in the development of methods to evaluate in vitro the application of inhalable composites containing MNPs in thermal therapy using a physiologically relevant metastatic TNBC model representative of the microenvironmental characteristics in secondary lung malignancies.


Assuntos
Hipertermia Induzida/métodos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Magnetoterapia/métodos , Nanopartículas de Magnetita/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Pulmonares/patologia , Camundongos , Micrometástase de Neoplasia/patologia , Micrometástase de Neoplasia/terapia , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/terapia
3.
Nutr Cancer ; 51(1): 59-67, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15749631

RESUMO

Fruits or berries of Hippophae rhamnoides (sea buckthorn), a rich source of vitamins A, C, and E, carotenes, flavonoids, and microelements such as sulfur, selenium, zinc, and copper, are edible and have been shown to protect from atopic dermatitis, hepatic injury, cardiac disease, ulcer, and atherosclerosis. However, its mechanism of action is not clear. We show that Hippophae inhibits benzo(a)pyrene-induced forestomach and DMBA-induced skin papillomagenesis in mouse. This decrease in carcinogenesis may be attributed to the concomitant induction of phase II enzymes such as glutathione S-transferase and DT-diaphorase and antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the mouse liver. This was accompanied by a remarkable induction of the transcription factor interferon regulatory factor-1 in the Hippophae-treated liver. Our results strongly suggest that Hippophae fruit is able to decrease carcinogen-induced forestomach and skin tumorigenesis, which might involve up-regulation of phase II and antioxidant enzymes as well as DNA-binding activity of IRF-1, a known antioncogenic transcription factor causing growth suppression and apoptosis induction for its anticancer effect.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hippophae/química , Fígado/enzimologia , Fosfoproteínas/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Gástricas/prevenção & controle , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Catalase/metabolismo , Proteínas de Ligação a DNA/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Fator Regulador 1 de Interferon , Masculino , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Papiloma/induzido quimicamente , Papiloma/enzimologia , Papiloma/prevenção & controle , Fosfoproteínas/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/enzimologia , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/enzimologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA