Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124809, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178877

RESUMO

Herein, we described for the first time, an efficient biogenic synthesis of APTs-AgNPs using acid protease from Melilotus indicus leaf extract. The acid protease (APTs) has an essential role in the stabilization, reduction, and capping of APTs-AgNPs. The crystalline nature, size, and surface morphology of APTs-AgNPs were examined using different techniques such as XRD, UV, FTIR, SEM, EDS, HRTEM, and DLS analysis. The generated APTs-AgNPs demonstrated notable performance as dual functionality (photocatalyst and antibacterial disinfection). By destroying 91 % of methylene blue (MB) in <90 min of exposure, APTs-AgNPs demonstrated remarkable photocatalytic activity. APTs-AgNPs also showed remarkable stability as a photocatalyst after five test cycles. Furthermore, the APTs-AgNPs was found to be a potent antibacterial agent with inhibition zones of 30(±0.5 mm), 27(±0.4 mm), 16(±0.1 mm), and 19(±0.7 mm) against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively, under both light and dark conditions. Furthermore, APTs-AgNPs effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals, demonstrating their potent antioxidant activity. The outcomes of this study thus demonstrates the dual functionality of APTs-AgNPs produced using the biogenic approach method as a photocatalyst and an antibacterial agent for effective microbial and environmental control.


Assuntos
Nanopartículas Metálicas , Peptídeo Hidrolases , Peptídeo Hidrolases/farmacologia , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Endopeptidases/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana
2.
Int J Biol Macromol ; 165(Pt A): 1475-1481, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058972

RESUMO

Herein acid phosphatase isoenzyme was extracted from the C. murale seedlings. The purification was accomplished by chromatographic techniques and passing through DEAE-cellulose and Sephadex G-100 column. The specific activity of acid phosphatase 5.75 U/mg of protein was obtained with 66 purification fold 15.8% yield and molecular mass was 29 kDa with very faint bands corresponding to 18 kDa and 14 kDa. The maximal activity at pH 5.0 and 50 °C best illustrated by first order kinetics. When temperature was raised (55 °C to 75 °C), the deactivation rate constant was increased from 0.001 to 0.014 min-1, while half-life was decreased from 693 to 49 min-1. The results of activity collected at different temperature were then used to estimate, activation energy of hydrolysis reaction (Ea = 47.59 kJmol-1). A high Z-value (18.86 °C min-1) was obtained indicating a less sensitivity towards temperatures. The residual activity examinations were carried out from 55 °C to 75 °C and assessing the Deactivation Energy (Ed 116.39 kJmol-1), Enthalpy change (ΔH° 113.55kJmol-1), Entropy change (ΔS° 110.33kJmol-1) and change in Gibbs free energy (ΔG° 10.02 kJmol-1). Taken together, thermodynamic parameters confirm the high stability of enzyme and show potential commercial applicability.


Assuntos
Fosfatase Ácida/química , Chenopodium/química , Cinética , Extratos Vegetais/química , Fosfatase Ácida/genética , Entropia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Peso Molecular , Extratos Vegetais/farmacologia , Plântula/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA