Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 338: 117837, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023611

RESUMO

Dealkalization is a prerequisite to converting bauxite residue into non-hazardous materials that can be used for various upcycling applications. Structural alkali (Na+) lodged inside the densely packed aluminosilicate-cages of sodalite, the dominant desilication product from refining alumina, is a common culprit in the persistence of strong alkalinity of bauxite residue. The present study unravelled chemical and mineralogical processes involved in sodalite dealkalization, driven by organic and inorganic acids. These acids have different H+ dissociation coefficients and their anions have different chelation abilities with surface metal atoms of aluminosilicate minerals. The efficacy of sodium removal by exposure to the acids was found not only dependent on the acid strength (pKa), but also on the chelating property of dissociated conjugate anions. Following an initial H+-Na+ exchange, Na+ removal from sodalite was correlated with partial hydrolysis of aluminosilicate network and resultant chelating reactions with acid anions. The selection of organic and inorganic acids whose conjugate bases possess good chelating capability in the pH buffer zone 7-9 (e.g., oxalate or phosphate), would provide significant aid to the dealkalization process. The findings in this study are crucial in understanding the conversion of bauxite residue into a soil-like growth media (technosol) for sustainable mined land rehabilitation.


Assuntos
Óxido de Alumínio , Sódio , Óxido de Alumínio/química , Silicatos de Alumínio , Ânions , Compostos Orgânicos
2.
Sci Total Environ ; 856(Pt 1): 159131, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183768

RESUMO

The present study aimed to characterise the adaptive growth and acidogenic fermentation performance of haloalkaliphilic bacteria sourced from field biofilms colonising seawater-treated bauxite residue, under moderate and extremely alkaline pH conditions (8.5 to 10.8) and coupled saline (EC ≈ 50 mS/cm) conditions. The haloalkaliphilic bacterial communities demonstrated strong adaptiveness to the increasing pH from 8.5 to 10.8. The dominant groups were Exiguobacterales and Bacillales at pH 8.5 and 10, but Lactobacillales and Bacillales at pH 10.8. The exposure to pH 10.8 initially delayed bacterial growth in the first 24 h, but which rapidly recovered to a peak rate at 48 h similar to that in the pH 10 treatment. Correspondingly, lactic acid concentration at pH 10.8 rapidly rose to as high as >2000 mg/L at 48 h. Bacterial growth and organic acid production were positively related to carbohydrate supply. Overall, these bacterial groups fermented glucose to produce mainly lactic acid (>80 %) and other acids (such as acetic acid, formic acid, and succinic acid), leading to 0.5-2.0 units of pH reduction, despite the strong buffering capacity in the culture solution. The bacteria could up-regulate their phosphatase activity to mineralise the organic P in the basal nutrient broth, but increasing soluble phosphate-P at a 1:10 of glucose-C was beneficial. The biofilm-sourced bacteria communities contained redundant fermentative haloalkaliphilic groups which were adaptive to strongly alkaline pH and saline conditions.


Assuntos
Óxido de Alumínio , Bactérias , Fermentação , Óxido de Alumínio/química , Ácidos/química , Ácido Láctico , Biofilmes , Glucose , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA