Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioact Mater ; 18: 368-382, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415309

RESUMO

To control capillary bleeding, surgeons may use absorbable hemostatic agents, such as Surgicel® and TachoSil®. Due to their slow resorption, their persistence in situ can have a negative impact on tissue repair in the resected organ. To avoid complications and obtain a hemostatic agent that promotes tissue repair, a zinc-supplemented calcium alginate compress was developed: HEMO-IONIC®. This compress is non-absorbable and is therefore removed once hemostasis has been achieved. After demonstrating the hemostatic efficacy and stability of the blood clot obtained with HEMO-IONIC, the impact of Surgicel, TachoSil, and HEMO-IONIC on cell activation and tissue repair were compared (i) in vitro on endothelial cells, which are essential to tissue repair, and (ii) in vivo in a mouse skin excision model. In vitro, only HEMO-IONIC maintained the phenotypic and functional properties of endothelial cells and induced their migration. In comparison, Surgicel was found to be highly cytotoxic, and TachoSil inhibited endothelial cell migration. In vivo, only HEMO-IONIC increased angiogenesis, the recruitment of cells essential to tissue repair (macrophages, fibroblasts, and epithelial cells), and accelerated maturation of the extracellular matrix. These results demonstrate that a zinc-supplemented calcium alginate, HEMO-IONIC, applied for 10 min at the end of surgery and then removed has a long-term positive effect on all phases of tissue repair.

2.
J Integr Med ; 14(3): 203-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27181127

RESUMO

OBJECTIVE: Celastrol has been established as a nuclear factor-κB (NF-κB) activation inhibitor; however, the exact mechanism behind this action is still unknown. Using text-mining technology, the authors predicted that interleukin-1 receptor-associated kinases (IRAKs) are potential celastrol targets, and hypothesized that targeting IRAKs might be one way that celastrol inhibits NF-κB. This is because IRAKs are key molecules for some crucial pathways to activate NF-κB (e.g., the interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) superfamily). METHODS: The human hepatocellular cell line (HepG2) treated with palmitic acid (PA) was used as a model for stimulating TLR4/NF-κB activation, in order to observe the potential effects of celastrol in IRAK regulation and NF-κB inhibition. The transfection of small interfering RNA was used for down-regulating TLR4, IRAK1 and IRAK4, and the Western blot method was used to detect changes in the protein expressions. RESULTS: The results showed that celastrol could effectively inhibit PA-caused TLR4-dependent NF-κB activation in the HepG2 cells; PA also activated IRAKs, which were inhibited by celastrol. Knocking down IRAKs abolished PA-caused NF-κB activation. CONCLUSION: The results for the first time show that targeting IRAKs is one way in which celastrol inhibits NF-κB activation.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Triterpenos/farmacologia , Células Hep G2 , Humanos , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Fosforilação , Receptor 4 Toll-Like/fisiologia
3.
Cell Physiol Biochem ; 37(3): 1089-103, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402060

RESUMO

BACKGROUND/AIMS: Atherosclerosis is associated with dysfunction of endothelial progenitor cells (EPCs). Tripterine, a chemical compound derived from the Chinese medicinal plant Tripterygium wilfordii Hook, displays anti-inflammatory properties in several animal models. We hypothesized that tripterine can improve EPC function and thus the efficiency of EPC transplantation. METHODS AND RESULTS: Tripterine preconditioning (2.5 µM, 4 h) improved EPC proliferation, tube formation, migration, and adhesion, and reduced apoptosis in cells cultured in ox-LDL (200 µg/ml). Tripterine restored integrin-linked kinase (ILK) levels downregulated by ox-LDL in EPCs, suggesting the involvement of the ILK/Akt pathway. Small interfering RNA-mediated depletion of ILK and dominant-negative ILK transduction inhibited the phosphorylation of the ILK downstream signaling targets protein kinase B/Akt and glycogen synthase kinase 3-beta (GSK-3ß), and reduced ß-catenin and cyclin D1 expression. In atherosclerotic mice injected with green fluorescent protein-labeled EPCs to evaluate EPC function, tripterine decreased aortic lesions and plaque deposition, and injection of tripterine-treated EPCs restored ILK levels. CONCLUSION: The present results suggest that tripterine improves vascular function in atherosclerosis by enhancing EPC function through a mechanism involving the ILK signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose/terapia , Células Progenitoras Endoteliais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Triterpenos/farmacologia , Animais , Aterosclerose/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas LDL/efeitos adversos , Camundongos , Triterpenos Pentacíclicos , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA