Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(3): e2200623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044285

RESUMO

SCOPE: Our laboratory has previously described the antioxidant and anti-inflammatory potential of a wild olive (acebuche, ACE) oil against hypertension-associated vascular retinopathies. The current study aims to analyze the antifibrotic effect of ACE oil on the retina of hypertensive mice. METHODS AND RESULTS: Mice are rendered hypertensive by administration of NG-nitro-L-arginine-methyl-ester (L-NAME) and simultaneously subjected to dietary supplementation with ACE oil or a reference extra virgin olive oil (EVOO). Intraocular pressure (IOP) is measured by rebound tonometry, and retinal vasculature/layers are analyzed by fundus fluorescein angiography and optical coherence tomography. Different fibrosis-related parameters are analyzed in the retina and choroid of normotensive and hypertensive mice with or without oil supplementation. Besides preventing the alterations found in hypertensive animals, including increased IOP, reduced fluorescein signal, and altered retinal layer thickness, the ACE oil-enriched diet improves collagen metabolism by regulating the expression of major fibrotic process modulators (matrix metalloproteinases, tissue inhibitors of metalloproteinases, connective tissue growth factor, and transforming growth factor beta family). CONCLUSION: Regular consumption of EVOO and ACE oil (with better outcomes in the latter) might help reduce abnormally high IOP values in the context of hypertension-related retinal damage, with significant reduction in the surrounding fibrotic process.


Assuntos
Hipertensão , Hipertensão Ocular , Camundongos , Animais , Hipertensão/prevenção & controle , Antioxidantes/metabolismo , Azeite de Oliva/farmacologia , Hipertensão Ocular/prevenção & controle , Fibrose , Retina/metabolismo
2.
Br J Nutr ; : 1-14, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35000635

RESUMO

Despite numerous reports on the beneficial effects of olive oil in the cardiovascular context, very little is known about the olive tree's wild counterpart (Olea europaea, L. var. sylvestris), commonly known as acebuche (ACE) in Spain. The aim of this study was to analyse the possible beneficial effects of an extra virgin ACE oil on vascular function in a rodent model of arterial hypertension (AH) induced by NG-nitro-l-arginine methyl ester (L-NAME). Four experimental groups of male Wistar rats were studied: (1) normotensive rats (Control group); (2) normotensive rats fed a commercial diet supplemented with 15 % (w/w) ACE oil (Acebuche group); (3) rats made hypertensive following administration of L-NAME (L-NAME group); and (4) rats treated with L-NAME and simultaneously supplemented with 15 % ACE oil (LN + ACE group). All treatments were maintained for 12 weeks. Besides a significant blood pressure (BP)-lowering effect, the ACE oil-enriched diet counteracted the alterations found in aortas from hypertensive rats in terms of morphology and responsiveness to vasoactive mediators. In addition, a decrease in hypertension-related fibrotic and oxidative stress processes was observed in L-NAME-treated rats subjected to ACE oil supplement. Therefore, using a model of AH via nitric oxide depletion, here we demonstrate the beneficial effects of a wild olive oil based upon its vasodilator, antihypertensive, antioxidant, antihypertrophic and antifibrotic properties. We postulate that regular inclusion of ACE oil in the diet can alleviate the vascular remodelling and endothelial dysfunction processes typically found in AH, thus resulting in a significant reduction of BP.

3.
Foods ; 10(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34574102

RESUMO

Inflammation plays a crucial role in the course of eye diseases, including many vascular retinopathies. Although olive oil is known to have beneficial effects against inflammatory processes, there is no information available on the anti-inflammatory potential of the wild olive tree (namely, acebuche (ACE) for the primitive Spanish lineages). Here we investigate the anti-inflammatory effects of ACE oil in the retina of a mouse model of arterial hypertension, which was experimentally induced by administration of L-NAME (NG-nitro-L-arginine-methyl-ester). The animals were fed supplements of ACE oil or extra virgin olive oil (EVOO, for comparative purposes). Retinal function was assessed by electroretinography (ERG), and different inflammation-related parameters were measured in the retina and choroid. Besides significant prevention of retinal dysfunction shown in ERG recordings, ACE oil-enriched diet upregulated the expression of the anti-inflammatory markers PPARγ, PPARα and IL-10, while reducing that of major proinflammatory biomarkers, IL-1ß, IL-6, TNF-α and COX-2. This is the first report to highlight the anti-inflammatory properties of an ACE oil-enriched diet against hypertension-related retinal damage. Noteworthy, dietary supplementation with ACE oil yielded better results compared to a reference EVOO.

4.
Antioxidants (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961933

RESUMO

Oxidative stress plays an important role in the pathogenesis of ocular diseases, including hypertensive eye diseases. The beneficial effects of olive oil on cardiovascular diseases might rely on minor constituents. Currently, very little is known about the chemical composition and/or therapeutic effects of the cultivated olive tree's counterpart, wild olive (also known in Spain as acebuche-ACE). Here, we aimed to analyze the antioxidant and retinoprotective effects of ACE oil on the eye of hypertensive mice made hypertensive via administration of NG-nitro-L-arginine-methyl-ester (L-NAME), which were subjected to a dietary supplementation with either ACE oil or extra virgin olive oil (EVOO) for comparison purposes. Deep analyses of major and minor compounds present in both oils was accompanied by blood pressure monitoring, morphometric analyses, as well as different determinations of oxidative stress-related parameters in retinal layers. Aside from its antihypertensive effect, an ACE oil-enriched diet reduced NADPH (nicotinamide adenine dinucleotide phosphate) oxidase activity/gene/protein expression (with a major implication of NADPH oxidase (NOX)2 isoform) in the retinas of hypertensive mice. Supplementation with ACE oil in hypertensive animals also improved alterations in nitric oxide bioavailability and in antioxidant enzyme profile. Interestingly, our findings show that the use of ACE oil resulted in better outcomes, compared with reference EVOO, against hypertension-related oxidative retinal damage.

5.
Life Sci ; 77(17): 2082-97, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15958269

RESUMO

L-carnitine and propionyl-L-carnitine are supplements to therapy in cardiovascular pathologies. Their effect on endothelial dysfunction in hypertension was studied after treatment with either 200 mg/kg of L-carnitine or propionyl-L-carnitine during 8 weeks of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Endothelial function was assessed in aortic rings by carbachol-induced relaxation (CCh 10(-8) to 10(-4) M) and factors involved were characterized in the presence of the inhibitors: L-NAME, indomethacin, the TXA2/PGH2 Tp receptor antagonist ICI-192,605 and the thromboxane synthetase inhibitor-Tp receptor antagonist, Ro-68,070. The effect on phenylephrine-induced contractions was also observed. To identify the nature of vasoactive COX-derived products, enzyme-immunoassay of incubation media was assessed. Involvement of reactive oxygen species was evaluated by incubating with superoxide dismutase and catalase. Nitric oxide production was evaluated by serum concentration of NO2+NO3.Treatment with both compounds improved endothelial function of rings from SHR without blood pressure change. Propionyl-L-carnitine increased NO participation in WKY and SHR. L-carnitine reduced endothelium-dependent responses to CCh in WKY due to an increase of TXA2 production. In both SHR and WKY, L-carnitine enhanced concentration of PGI2 and increased participation of NO. Results in the presence of SOD plus catalase show that it might be related to antioxidant properties of L-carnitine and propionyl-L-carnitine. Comparison between the effect of both compounds shows that both may reduce reactive oxygen species and increase NO participation in endothelium-dependent relaxations in SHR. However, only L-carnitine was able to increase the release of the vasodilator PGI2 and even enhanced TXA2 production in normotensive rats.


Assuntos
Carnitina/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Vasodilatação/efeitos dos fármacos , Administração Oral , Animais , Antioxidantes/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Aorta Torácica/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Carnitina/administração & dosagem , Carnitina/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Epoprostenol/metabolismo , Hipertensão/enzimologia , Hipertensão/metabolismo , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Tromboxano A2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA