Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32850771

RESUMO

The waste produced by petrochemical industries has a significant environmental impact. Biotechnological approaches offer promising alternatives for waste treatment in a sustainable and environment-friendly manner. Microbial consortia potentially clean up the wastes through degradation of hydrocarbons using biosurfactants as adjuvants. In this work, microbial consortia were obtained from a production water (PW) sample from a Brazilian oil reservoir using enrichment and selection approaches in the presence of oil as carbon source. A consortium was obtained using Bushnell-Haas (BH) mineral medium with petroleum. In parallel, another consortium was obtained in yeast extract peptone dextrose (YPD)-rich medium and was subsequently compared to the BH mineral medium with petroleum. Metagenomic sequencing of these microbial communities showed that the BH consortium was less diverse and predominantly composed of Brevibacillus genus members, while the YPD consortium was taxonomically more diverse. Functional annotation revealed that the BH consortium was enriched with genes involved in biosurfactant synthesis, while the YPD consortium presented higher abundance of hydrocarbon degradation genes. The comparison of these two consortia against consortia available in public databases confirmed the enrichment of biosurfactant genes in the BH consortium. Functional assays showed that the BH consortium exhibits high cellular hydrophobicity and formation of stable emulsions, suggesting that oil uptake by microorganisms might be favored by biosurfactants. In contrast, the YPD consortium was more efficient than the BH consortium in reducing interfacial tension. Despite the genetic differences between the consortia, analysis by a gas chromatography-flame ionization detector showed few significant differences regarding the hydrocarbon degradation rates. Specifically, the YPD consortium presented higher degradation rates of C12 to C14 alkanes, while the BH consortium showed a significant increase in the degradation of some polycyclic aromatic hydrocarbons (PAHs). These data suggest that the enrichment of biosurfactant genes in the BH consortium could promote efficient hydrocarbon degradation, despite its lower taxonomical diversity compared to the consortium enriched in YPD medium. Together, these results showed that cultivation in a minimal medium supplemented with oil was an efficient strategy in selecting biosurfactant-producing microorganisms and highlighted the biotechnological potential of these bacterial consortia in waste treatment and bioremediation of impacted areas.

2.
J Appl Microbiol ; 128(4): 1038-1049, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31816165

RESUMO

AIM: The purpose of this study was to uncover insights into the mechanism of action of the 8-hydroxyquinoline derivatives PH151 and PH153. In addition, with the future perspective of developing a topical drug for the treatment of candidiasis and dermatophytosis, the antifungal activity of a nanoemulsion formulation containing the most active compound (PH151) is also presented here. METHODS AND RESULTS: Sorbitol protection assay and scanning electron microscopy indicate that the 8-hydroxyquinoline derivatives act on the cell wall of Candida sp. and dermatophytes and they inhibit the pseudohyphae formation of C. albicans. These findings demonstrate a strong effect of these compounds on C. albicans morphogenesis, which can be considered a potential mode of action for this molecule. Besides, the nanoemulsion formulation MIC values ranged from 0·5 to 4 µg ml-1 demonstrating the significant antifungal activity when incorporated into a pharmaceutical formulation. CONCLUSIONS: Taken together, the results support the potential of these molecules as promising antifungal candidates for the treatment of candidiasis and dermatophytosis. SIGNIFICANCE AND IMPACT OF THE STUDY: There is an emerging need to fill the pipeline with new antifungal drugs due to the limitations presented by the currently used drugs. In this study, we have described a novel formulation with a 8-hydroxyquinoline-5-sulfonamide derivative which has presented a great potency in providing a finished product. Furthermore, the derivative has shown a selective mechanism of action confirming its potential to be developed into a new drug candidate.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Dermatomicoses/microbiologia , Oxiquinolina/farmacologia , Sulfonamidas/farmacologia , Antifúngicos/química , Arthrodermataceae/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Parede Celular/efeitos dos fármacos , Dermatomicoses/tratamento farmacológico , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxiquinolina/química , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA