Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 160(1): 215-25, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760209

RESUMO

Triacylglycerol (TAG) levels and oil bodies persist in sucrose (Suc)-rescued Arabidopsis (Arabidopsis thaliana) seedlings disrupted in seed oil catabolism. This study set out to establish if TAG levels persist as a metabolically inert pool when downstream catabolism is disrupted, or if other mechanisms, such as fatty acid (FA) recycling into TAG are operating. We show that TAG composition changes significantly in Suc-rescued seedlings compared with that found in dry seeds, with 18:2 and 18:3 accumulating. However, 20:1 FA is not efficiently recycled back into TAG in young seedlings, instead partitioning into the membrane lipid fraction and diacylglycerol. In the lipolysis mutant sugar dependent1and the ß-oxidation double mutant acx1acx2 (for acyl-Coenzyme A oxidase), levels of TAG actually increased in seedlings growing on Suc. We performed a transcriptomic study and identified up-regulation of an acyltransferase gene, DIACYLGLYCEROL ACYLTRANSFERASE3 (DGAT3), with homology to a peanut (Arachis hypogaea) cytosolic acyltransferase. The acyl-Coenzyme A substrate for this acyltransferase accumulates in mutants that are blocked in oil breakdown postlipolysis. Transient expression in Nicotiana benthamiana confirmed involvement in TAG synthesis and specificity toward 18:3 and 18:2 FAs. Double-mutant analysis with the peroxisomal ATP-binding cassette transporter mutant peroxisomal ABC transporter1 indicated involvement of DGAT3 in the partitioning of 18:3 into TAG in mutant seedlings growing on Suc. Fusion of the DGAT3 protein with green fluorescent protein confirmed localization to the cytosol of N. benthamiana. This work has demonstrated active recycling of 18:2 and 18:3 FAs into TAG when seed oil breakdown is blocked in a process involving a soluble cytosolic acyltransferase.


Assuntos
Arabidopsis/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Óleos de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/biossíntese , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arachis/enzimologia , Arachis/genética , Citosol/enzimologia , Diacilglicerol O-Aciltransferase/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Peroxissomos/enzimologia , Plântula/metabolismo , Sementes/genética , Homologia de Sequência de Aminoácidos , Sacarose/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
Planta ; 235(3): 629-39, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22002626

RESUMO

Acyl-acyl carrier protein (ACP) thioesterases are enzymes that control the termination of intraplastidial fatty acid synthesis by hydrolyzing the acyl-ACP complexes. Among the different thioesterase gene families found in plants, the FatA-type fulfills a fundamental role in the export of the C18 fatty acid moieties that will be used to synthesize most plant glycerolipids. A reverse genomic approach has been used to study the FatA thioesterase in seed oil accumulation by screening different mutant collections of Arabidopsis thaliana for FatA knockouts. Two mutants were identified with T-DNA insertions in the promoter region of each of the two copies of FatA present in the Arabidopsis genome, from which a double FatA Arabidopsis mutant was made. The expression of both forms of FatA thioesterases was reduced in this double mutant (fata1 fata2), as was FatA activity. This decrease did not cause any evident morphological changes in the mutant plants, although the partial reduction of this activity affected the oil content and fatty acid composition of the Arabidopsis seeds. Thus, dry mutant seeds had less triacylglycerol content, while other neutral lipids like diacylglycerols were not affected. Furthermore, the metabolic flow of the different glycerolipid species into seed oil in the developing seeds was reduced at different stages of seed formation in the fata1 fata2 line. This diminished metabolic flow induced increases in the proportion of linolenic and erucic fatty acids in the seed oil, in a similar way as previously reported for the wri1 Arabidopsis mutant that accumulates oil poorly. The similarities between these two mutants and the origin of their phenotype are discussed in function of the results.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Tioléster Hidrolases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Graxos/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA