Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2354: 375-385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448170

RESUMO

Potato bacterial wilt is caused by the devastating bacterial pathogen Ralstonia solanacearum. Quantitative resistance to this disease has been and is currently introgressed from a number of wild relatives into cultivated varieties through laborious breeding programs. Here, we present two methods that we have developed to facilitate the screening for resistance to bacterial wilt in potato. The first one uses R. solanacearum reporter strains constitutively expressing the luxCDABE operon or the green fluorescent protein (gfp) to follow pathogen colonization in potato germplasm. Luminescent strains are used for nondestructive live imaging, while fluorescent ones enable precise pathogen visualization inside the plant tissues through confocal microscopy. The second method is a BIO-multiplex-PCR assay that is useful for sensitive and specific detection of viable R. solanacearum (IIB-1) cells in latently infected potato plants. This BIO-multiplex-PCR assay can specifically detect IIB-1 sequevar strains as well as strains belonging to all four R. solanacearum phylotypes and is sensitive enough to detect without DNA extraction ten bacterial cells per mL in complex samples.The described methods allow the detection of latent infections in roots and stems of asymptomatic plants and were shown to be efficient tools to assist potato breeding programs.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Reação em Cadeia da Polimerase Multiplex , Óperon , Doenças das Plantas , Ralstonia solanacearum/genética
2.
Mol Plant Pathol ; 22(3): 317-333, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389783

RESUMO

Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Solanum/microbiologia , Proteínas de Bactérias/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta , Ralstonia solanacearum/patogenicidade , Virulência
3.
Plant Sci ; 291: 110360, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928669

RESUMO

Both suberin and its associated waxes contribute to the formation of apoplastic barriers that protect plants from the environment. Some transcription factors have emerged as regulators of the suberization process. The potato StNAC103 gene was reported as a repressor of suberin polyester and suberin-associated waxes deposition because its RNAi-mediated downregulation (StNAC103-RNAi) over-accumulated suberin and associated waxes in the tuber phellem concomitantly with the induction of representative biosynthetic genes. Here, to explore if other genes of the large NAC gene family participate to this repressive function, we extended the silencing to other NAC members by targeting the conserved NAC domain of StNAC103 (StNAC103-RNAi-c). Transcript profile of the StNAC103-RNAi-c phellem indicated that StNAC101 gene was an additional potential target. In comparison with StNAC103-RNAi, the silencing with StNAC103-RNAi-c construct resulted in a similar effect in suberin but yielded an increased load of associated waxes in tuber phellem, mainly alkanes and feruloyl esters. Globally, the chemical effects in both silenced lines are supported by the transcript accumulation profile of genes involved in the biosynthesis, transport and regulation of apoplastic lipids. In contrast, the genes of polyamine biosynthesis were downregulated. Altogether these results point out to StNAC101 as a candidate to repress the suberin-associated waxes.


Assuntos
Inativação Gênica , Lipídeos/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo
4.
Mol Plant Pathol ; 20(1): 20-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30062690

RESUMO

The identification of chemical compounds that prevent and combat bacterial diseases is fundamental for crop production. Bacterial virulence inhibitors are a promising alternative to classical control treatments, because they have a low environmental impact and are less likely to generate bacterial resistance. The major virulence determinant of most animal and plant bacterial pathogens is the type III secretion system (T3SS). In this work, we screened nine plant extracts and 12 isolated compounds-including molecules effective against human pathogens-for their capacity to inhibit the T3SS of plant pathogens and for their applicability as virulence inhibitors for crop protection. The screen was performed using a luminescent reporter system developed in the model pathogenic bacterium Ralstonia solanacearum. Five synthetic molecules, one natural product and two plant extracts were found to down-regulate T3SS transcription, most through the inhibition of the regulator hrpB. In addition, for three of the molecules, corresponding to salicylidene acylhydrazide derivatives, the inhibitory effect caused a dramatic decrease in the secretion capacity, which was translated into impaired plant responses. These candidate virulence inhibitors were then tested for their ability to protect plants. We demonstrated that salicylidene acylhydrazides can limit R. solanacearum multiplication in planta and protect tomato plants from bacterial speck caused by Pseudomonas syringae pv. tomato. Our work validates the efficiency of transcription reporters to discover compounds or natural product extracts that can be potentially applied to prevent bacterial plant diseases.


Assuntos
Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Sistemas de Secreção Tipo III , Anidridos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/genética , Ralstonia solanacearum/crescimento & desenvolvimento , Transcrição Gênica/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Sistemas de Secreção Tipo III/genética
5.
BMC Genomics ; 16: 246, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25880642

RESUMO

BACKGROUND: Solanum commersonii is a wild potato species that exhibits high tolerance to both biotic and abiotic stresses and has been used as a source of genes for introgression into cultivated potato. Among the interesting features of S. commersonii is resistance to the bacterial wilt caused by Ralstonia solanacearum, one of the most devastating bacterial diseases of crops. RESULTS: In this study, we used deep sequencing of S. commersonii RNA (RNA-seq) to analyze the below-ground plant transcriptional responses to R. solanacearum. While a majority of S. commersonii RNA-seq reads could be aligned to the Solanum tuberosum Group Phureja DM reference genome sequence, we identified 2,978 S. commersonii novel transcripts through assembly of unaligned S. commersonii RNA-seq reads. We also used RNA-seq to study gene expression in pathogen-challenged roots of S. commersonii accessions resistant (F118) and susceptible (F97) to the pathogen. Expression profiles obtained from read mapping to the S. tuberosum reference genome and the S. commersonii novel transcripts revealed a differential response to the pathogen in the two accessions, with 221 (F118) and 644 (F97) differentially expressed genes including S. commersonii novel transcripts in the resistant and susceptible genotypes. Interestingly, 22.6% of the F118 and 12.8% of the F97 differentially expressed genes had been previously identified as responsive to biotic stresses and half of those up-regulated in both accessions had been involved in plant pathogen responses. Finally, we compared two different methods to eliminate ribosomal RNA from the plant RNA samples in order to allow dual mapping of RNAseq reads to the host and pathogen genomes and provide insights on the advantages and limitations of each technique. CONCLUSIONS: Our work catalogues the S. commersonii transcriptome and strengthens the notion that this species encodes specific genes that are differentially expressed to respond to bacterial wilt. In addition, a high proportion of S. commersonii-specific transcripts were altered by R. solanacearum only in F118 accession, while phythormone-related genes were highly induced in F97, suggesting a markedly different response to the pathogen in the two plant accessions studied.


Assuntos
Genoma de Planta , Ralstonia solanacearum/fisiologia , Solanum/genética , Transcriptoma , Resistência à Doença/genética , Genótipo , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Análise de Sequência de RNA , Solanum/microbiologia , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
Mol Plant Microbe Interact ; 27(3): 277-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24283938

RESUMO

Several breeding programs are under way to introduce resistance to bacterial wilt caused by Ralstonia solanacearum in solanaceous crops. The lack of screening methods allowing easy measurement of pathogen colonization and the inability to detect latent (i.e., symptomless) infections are major limitations when evaluating resistance to this disease in plant germplasm. We describe a new method to study the interaction between R. solanacearum and potato germplasm that overcomes these restrictions. The R. solanacearum UY031 was genetically modified to constitutively generate light from a synthetic luxCDABE operon stably inserted in its chromosome. Colonization of this reporter strain on different potato accessions was followed using life imaging. Bacterial detection in planta by this nondisruptive system correlated with the development of wilting symptoms. In addition, we demonstrated that quantitative detection of the recombinant strain using a luminometer can identify latent infections on symptomless potato plants. We have developed a novel, unsophisticated, and accurate method for high-throughput evaluation of pathogen colonization in plant populations. We applied this method to compare the behavior of potato accessions with contrasting resistance to R. solanacearum. This new system will be especially useful to detect latency in symptomless parental lines before their inclusion in long-term breeding programs for disease resistance.


Assuntos
Cromossomos Bacterianos/genética , Proteínas Luminescentes/genética , Organismos Geneticamente Modificados , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Solanum/microbiologia , Proteínas de Bactérias/genética , Cruzamento , Resistência à Doença , Genes Reporter , Genes Sintéticos , Interações Hospedeiro-Patógeno , Medições Luminescentes , Óperon , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Regiões Promotoras Genéticas , Ralstonia solanacearum/isolamento & purificação , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/fisiologia , Sensibilidade e Especificidade , Solanum tuberosum/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA