Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Health Sci Eng ; 21(2): 497-512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869604

RESUMO

Nowadays, public concern is focused on the degradation of water quality. For this reason, the development of innovative technologies for water treatment in view of (micro)pollutant removal is important. Indeed, organic (micro)pollutants, such as pharmaceuticals, herbicides, pesticides and plasticizers at concentration levels of µg L-1 or even ng L-1 are hardly removed during conventional wastewater treatment. In view of this, thermo-plasma expanded graphite, a light-weight innovative material in the form of a powder, was encapsulated into calcium alginate to obtain a granular form useful as filtration and adsorption material for removal of different pollutants. The produced material was used to remove atrazine, bisphenol-A, 17-α-ethinylestradiol and carbamazepine (at concentration levels of 125, 250 and 500 µg L-1) by top-down filtration. The effect of flow rate, bed depth and adsorbent composition was evaluated based on breakthrough curves. The experimental data was analysed with the Adams-Bohart model in view of scale-up. Under optimal conditions, removal and adsorption capacity of respectively about 21%, 21%, 38%,42%, 43 µg g-1, 44 µg g-1, 37 µg g-1 and 87 µg g-1 were obtained for atrazine, bisphenol, 17-α ethinylestradiol and carbamazepine when using 0.12 g of thermo-plasma expanded graphite to treat 200 mL at 500 µg L-1 (for each compound) of solution obtaining at contact time of 20 min. The granular form of TPEG obtained (GTPEG) by entrapping in calcium alginate results to have a good adsorbent property for the removal of carbamazepine, atrazine, bisphenol A and 17-α ethinylestradiol from water at concentration levels between 250 and 500 µg L-1. Promising results confirm the adsorbent properties of TPEG and push-up us to investigate on its application and improve of its performance by evaluating different entrapping materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-023-00876-9.

2.
J Environ Manage ; 298: 113489, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426216

RESUMO

Greywater treatment and reuse for non-potable purposes in urban areas has become a widely researched topic to reduce the burden on fresh water resources. This study reports on the use of a green wall for treating grey water and reusing the effluent for toilet flushing, called Total Value Wall (TVW). Initially, the effectiveness of (mixtures of) different substrates, i.e. lava, lightweight expanded clay aggregates, organic soil and biochar was investigated by means of column tests. All substrates were first examined for hydraulic characteristics and later on the columns were fed with synthetic grey wastewater and followed up in terms of removal efficiency of COD and detergents. The mixture consisting of lava (50%), organic soil (25%) and biochar (25%) proved to be optimal both in terms of percolation rates and removal efficiencies, and was thus selected for the full-scale system. The full-scale TVW of 14.4 m2 was installed at a terraced house in Ghent (Belgium), and was loaded with grey water at 100 L per day. Influent and effluent quality were routinely monitored by grab sampling, water savings were monitored by means of flow meters, and electricity consumption was also accounted for. The TVW was further equipped with sensors that measure temperature, Particulate Matter (PM10) and CO2 in the air. The full-scale system obtained effluent concentrations of 13 mg.L-1 TSS, 91 mg.L-1 COD and 5 mg.L-1 BOD5. Ammonium and total coliforms were removed with removal rates of 97% and 99% (2 log units) respectively. However, an increase in effluent concentration of nitrate and phosphate was observed due to leaching from the selected substrate. Available data from the temperature sensors have clearly demonstrated the additional benefit of the TVW as an insulating layer, keeping the heat outside on warmer days, and keeping the heat inside on colder days. Overall, this study demonstrated that the TVW is a sustainable system for greywater treatment and reuse.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Reciclagem , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
3.
Bioresour Technol ; 192: 696-702, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26094196

RESUMO

Pretreatment of lignocellulosic biomass is necessary to enhance the hydrolysis, which is the rate-limiting step in biogas production. Laccase and versatile peroxidase are enzymes known to degrade lignin. Therefore, the impact of enzymatic pretreatment was studied on a variety of biomass. A significant higher release in total phenolic compounds (TPC) was observed, never reaching the inhibiting values for anaerobic digestion. The initial concentration of TPC was higher in the substrates containing more lignin, miscanthus and willow. The anaerobic digestion of these two substrates resulted in a significant lower biomethane production (68.8-141.7 Nl/kg VS). Other substrates, corn stover, flax, wheat straw and hemp reached higher biomethane potential values (BMP), between 241 and 288 Nl/kg VS. Ensilaged maize reached 449 Nl/kg VS, due to the ensilation process, which can be seen as a biological and acid pretreatment. A significant relation (R(2) = 0.89) was found between lignin content and BMP.


Assuntos
Biocombustíveis/microbiologia , Celulase/química , Lignina/química , Lignina/metabolismo , Metano/metabolismo , Fenóis/metabolismo , Estudos de Viabilidade , Metano/isolamento & purificação , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA