Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Toxicol ; 5: 1116707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342468

RESUMO

The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.

2.
Int J Hyg Environ Health ; 251: 114170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37207539

RESUMO

Most countries have acknowledged the importance of assessing and quantifying their population's internal exposure from chemicals in air, water, soil, food and other consumer products due to the potential health and economic impact. Human biomonitoring (HBM) is a valuable tool which can be used to quantify such exposures and effects. Results from HBM studies can also contribute to improving public health by providing evidence of individuals' internal chemical exposure as well as data to understand the burden of disease and associated costs thereby stimulating the development and implementation of evidence-based policy. To have a holistic view on HBM data utilisation, a multi-case research approach was used to explore the use of HBM data to support national chemical regulations, protect public health and raise awareness among countries participating in the HBM4EU project. The Human Biomonitoring for Europe (HBM4EU) Initiative (https://www.hbm4eu.eu/) is a collaborative effort involving 30 countries, the European Environment Agency (EEA) and the European Commission (contracting authority) to harmonise procedures across Europe and advance research into the understanding of the health impacts of environmental chemical exposure. One of the aims of the project was to use HBM data to support evidence based chemical policy and make this information timely and directly available for policy makers and all partners. The main data source for this article was the narratives collected from 27 countries within the HBM4EU project. The countries (self-selection) were grouped into 3 categories in terms of HBM data usage either for public awareness, policy support or for the establishment HBM programme. Narratives were analysed/summarised using guidelines and templates that focused on ministries involved in or advocating for HBM; steps required to engage policy makers; barriers, drivers and opportunities in developing a HBM programme. The narratives reported the use of HBM data either for raising awareness or addressing environmental/public health issues and policy development. The ministries of Health and Environment were reported to be the most prominent entities advocating for HBM, the involvement of several authorities/institutions in the national hubs was also cited to create an avenue to interact, discuss and gain the attention of policy makers. Participating in European projects and the general population interest in HBM studies were seen as drivers and opportunities in developing HBM programmes. A key barrier that was cited by countries for establishing and sustaining national HBM programmes was funding which is mainly due to the high costs associated with the collection and chemical analysis of human samples. Although challenges and barriers still exist, most countries within Europe were already conversant with the benefits and opportunities of HBM. This article offers important insights into factors associated with the utilisation of HBM data for policy support and public awareness.


Assuntos
Monitoramento Biológico , Monitoramento Ambiental , Humanos , Monitoramento Ambiental/métodos , Saúde Pública , Exposição Ambiental/análise , Formulação de Políticas
3.
Environ Res ; 204(Pt A): 111984, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34492275

RESUMO

Exposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Monitoramento Biológico , Cromatos , Cromo/análise , Estudos Transversais , Monitoramento Ambiental , Humanos , Exposição Ocupacional/análise
4.
Sci Total Environ ; 781: 146682, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33812114

RESUMO

BACKGROUND: The prevalence of pollen allergy has increased due to urbanization, climate change and air pollution. The effects of green space and air pollution on respiratory health of pollen allergy patients are complex and best studied in spatio-temporal detail. METHODS: We tracked 144 adults sensitized to Betulaceae pollen during the tree pollen season (January-May) of 2017 and 2018 and assessed their spatio-temporal exposure to green space, allergenic trees, air pollutants and birch pollen. Participants reported daily symptom severity scores. We extracted 404 case days with high symptom severity scores and matched these to 404 control days. The data were analyzed using conditional logistic regression with a 1:1 case-crossover design. RESULTS: Case days were associated with exposure to birch pollen concentration (100 grains/m3) [adjusted odds ratio 1.045 and 95% confidence interval (1.014-1.078)], O3 concentration (10 µg/m3) [1.504 (1.281-1.766)] and PM10 concentration (10 µg/m3) [1.255 (1.007-1.565)] on the day of the severe allergy event and with the cumulative exposure of one and two days before. Exposure to grass cover (10% area fraction) [0.655 (0.446-0.960)], forest cover (10% area fraction) [0.543 (0.303-0.973)] and density of Alnus (10%) [0.622 (0.411-0.942)] were protective for severe allergy, but only on the day of the severe allergy event. Increased densities of Betula trees (10%) were a risk factor [unadjusted OR: 2.014 (1.162-3.490)]. CONCLUSION: Exposure to green space may mitigate tree pollen allergy symptom severity but only when the density of allergenic trees is low. Air pollutants contribute to more severe allergy symptoms. Spatio-temporal tracking allows for a more realistic exposure assessment.


Assuntos
Rinite Alérgica Sazonal , Adulto , Alérgenos , Bélgica/epidemiologia , Betula , Estudos Cross-Over , Humanos , Parques Recreativos , Pólen , Rinite Alérgica Sazonal/epidemiologia
5.
Int J Hyg Environ Health ; 223(1): 71-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628039

RESUMO

BACKGROUND: Residential green space may improve human health, for example by promoting physical activity and by reducing stress. Conversely, residential green space may increase stress by emitting aeroallergens and exacerbating allergic disease. Here we examine impacts of exposure to residential green space on distress in the susceptible subpopulation of adults sensitized to tree pollen allergens. METHODS: In a panel study of 88 tree pollen allergy patients we analyzed self-reported mental health (GHQ-12), perceived presence of allergenic trees (hazel, alder, birch) near the residence and residential green space area within 1 km distance [high (≥3 m) and low (<3 m) green]. Results were adjusted for patients' background data (gender, age, BMI, smoking status, physical activity, commuting distance, education level, allergy medication use and chronic respiratory problems) and compared with distress in the general population (N = 2467). RESULTS: Short-term distress [mean GHQ-12 score 2.1 (95% confidence interval 1.5-2.7)] was higher in the study population than in the general population [1.5 (1.4-1.7)]. Residential green space had protective effects against short-term distress [high green, per combined surface area of 10 ha: adjusted odds ratio OR = 0.94 (95% confidence interval 0.90-0.99); low green, per 10 ha: OR = 0.85 (0.78-0.93)]. However, distress was higher in patients who reported perceived presence of allergenic trees near their residence [present vs. absent: OR = 2.04 (1.36-3.07)]. CONCLUSIONS: Perceived presence of allergenic tree species in the neighbourhood of the residence of tree pollen allergy patients modulates the protective effect of residential green space against distress during the airborne tree pollen season.


Assuntos
Ambiente Construído , Exposição Ambiental/estatística & dados numéricos , Angústia Psicológica , Rinite Alérgica Sazonal/epidemiologia , Adulto , Alérgenos , Feminino , Humanos , Hipersensibilidade , Masculino , Pólen , Estações do Ano , Árvores
6.
Int J Biometeorol ; 62(3): 483-491, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29064036

RESUMO

A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.


Assuntos
Poluentes Atmosféricos/análise , Alérgenos/análise , Pólen , Tempo (Meteorologia) , Bélgica , Cidades , Monitoramento Ambiental , Magnoliopsida , Estações do Ano , Árvores
7.
Ecohealth ; 13(2): 303-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27174430

RESUMO

Belgium is among the European countries that are the most affected by allergic rhinitis. Pollen grains and fungal spores represent important triggers of symptoms. However, few studies have investigated their real link with disease morbidity over several years. Based on aeroallergen counts and health insurance datasets, the relationship between daily changes in pollen, fungal spore concentrations and daily changes in reimbursable systemic antihistamine sales has been investigated between 2005 and 2011 in the Brussels-Capital Region. A Generalized Linear Model was used and adjusted for air pollution, meteorological conditions, flu, seasonal component and day of the week. We observed an augmentation in drug sales despite no significant increase in allergen levels in the long term. The relative risk of buying allergy medications associated with an interquartile augmentation in pollen distributions increased significantly for Poaceae, Betula, Carpinus, Fraxinus and Quercus. Poaceae affected the widest age group and led to the highest increase of risk which reached 1.13 (95% CI [1.11-1.14]) among the 19- to 39-year-old men. Betula showed the second most consistent relationship across age groups. Clear identification of the provoking agents may improve disease management by customizing prevention programmes. This work also opens several research perspectives related to impact of climate modification or subpopulation sensitivity.


Assuntos
Alérgenos , Pólen , Rinite Alérgica Sazonal/epidemiologia , Adulto , Idoso , Bélgica , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Poaceae , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA