Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Revista
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis ; 23(11): 72, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733506

RESUMO

Scleral biomechanics plays a key role in the understanding of myopia progression. In this study, we characterized the elastic properties of sclera using an air-coupled ultrasonic (ACUS) optical coherence elastography (OCE) system. New Zealand rabbit eyes (n=7) were measured (<24hr postmortem) in four scleral locations: superior/inferior temporal (ST, IT), and superior/inferior nasal (SN, IN) maintaining an intraocular pressure of 15 mmHg. Elastic waves were induced in the sclera, and wave propagation velocity and shear modulus were measured along two directions: circumferential (superior-inferior) and meridional (nasal-temporal). Wave velocity in scleral tissue ranged from 6 to 24 m/s and shear modulus from 11 to 150 kPa. Velocity was significantly higher (p<.001) in the circumferential vs. meridional directions in the following locations: ST:15.83±2.85 vs 9.43±1.68 m/s, IT:15.00±3.98 vs 8.93±1.53 m/s; SN:16.79±4.30 vs 9.27±1.47 m/s; and IN:13.92±3.85 vs 8.57±1.46 m/s. The average shear modulus in the circumferential was also significantly higher (p<.001) than in the meridional direction for all locations: 65.37±6.04 vs 22.55±1.36 kPa. These results show that the rabbit sclera is mechanically anisotropic with higher rigidity in the circumferential direction compared to the meridional direction. ACUS-OCE is a promising non-invasive method to quantify the biomechanical changes in scleral tissue for future studies involving myopia treatments.


Assuntos
Técnicas de Imagem por Elasticidade , Meridianos , Miopia , Animais , Coelhos , Ultrassom , Esclera/diagnóstico por imagem , Anisotropia , Miopia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA