RESUMO
This study evaluated the effect of different potassium supplementation dosages on the physiological responses of Pangasianodon hypophthalmus reared in an aquaponic system with Spinacia oleracea L. for 60 days. The system comprised of a rectangular fish tank of 168 l capacity (water volume = 100 l) with nutrient film technique (NFT)-based hydroponic component with fish to plant ratio of 2.8 kg m-3 : 28 plants m-2 in all the treatments. The osmoregulatory and stress parameters of P. hypophthalmus at four different potassium dosages of T1 (90 mg l-1 ), T2 (120 mg l-1 ), T3 (150 mg l-1 ) and T4 (180 mg l-1 ) were compared with C (control, 0 mg l-1 ) to examine the potassium level to be applied to aquaponics. The water quality parameters and fish production were found to have no adverse impact due to potassium supplementation. The spinach yield during two harvests, i.e., before and after potassium supplementation, revealed that the yield was significantly higher (P < 0.05) after supplementation with the highest yield in T3 and T4. The osmoregulatory parameters such as plasma osmolality, Na+ , K+ ATPase activity in gill and plasma ionic profile (Cl- , Ca2+ and Na+ ) showed an insignificant variation (P > 0.05) between control and treatments except for higher plasma potassium concentration (1.98 ± 0.19 mmol l-1 ) in T4. The stress and antioxidant enzyme analysis exhibited significantly higher plasma glucose and superoxide dismutase (SOD) activity in gill and liver in T4, whereas cortisol and catalase showed an insignificant difference (P > 0.05). The experimental findings demonstrated that the potassium dosage up to 150 mg l-1 could be suggested as optimum for P. hypophthalmus and spinach aquaponics without impairing the health and oxidative status of P. hypophthalmus.
Assuntos
Peixes-Gato , Spinacia oleracea , Animais , Peixes-Gato/fisiologia , Suplementos Nutricionais , Brânquias , Potássio/farmacologiaRESUMO
The effects of dietary osmolytes for alleviating osmotic stress and enhancing growth are not well elucidated in fish reared in inland saline water. The present study evaluated the effects of dietary taurine or potassium (K+) individually or in combination on growth, ionic homeostasis, and stress response of GIFT tilapia reared in potassium deficient low saline water (PDLSW, 10 ppt salinity) mimicking inland saline water. Isonitrogenous and isoenergetic diets supplemented with five potassium concentrations (0, 0.3, 0.45, 0.6 and 0.75 %), two taurine (T) concentrations (0.5 and 1.0 %) and two combinations of both (K+ 0.1 % + T 0.5 % and K+ 0.2 % + T 0.5 %) were fed to GIFT juveniles (4.4 ± 0.02 g body weight) and reared in PDLSW for 45 days. The fish fed on the diet fortifying with K+ 0.2 % + T 0.5 % showed the highest growth performance among the controls and other treatment groups. Dietary supplementation had no effects on PDLSW induced increase in osmoregulatory endpoints. The optimum dietary potassium requirement of GIFT reared in PDLSW was 0.57 and 0.599 g/100 g diet. Dietary K+ down-regulated the PDLSW induced expression of NKAa1, AQP1, and ClC2, whereas inhibited taurine-induced up-regulation of AQP1 and CLC2, which is the first report in tilapia. In addition, dietary K+ and taurine modulated antioxidant and metabolic enzyme activities for easing stress and balancing energy requirements. Thus, blending of potassium (0.2 %) and taurine (0.5 %) in the diet appears best to mitigate stress and enhance GIFT growth reared in inland saline water.
RESUMO
Hypoxia is a common stressor in aquaculture systems, which causes severe physiological disturbances, ultimately leading to mortality or reduced productivity. Arginine, as a precursor of NO, has a role in enhancing oxygen delivery. Thus, an experiment was conducted to evaluate the effect of dietary arginine (Arg) in Cirrhinus mrigala exposed to hypoxia. The fish were fed with different levels of arginine for 60 days and exposed for 72 h to a sublethal level of hypoxia (0.50 ± 0.16 mg/L dissolved oxygen [DO]). The six treatment groups with three replicates were N0 (0% Arg + Normoxia), H0 (0% Arg + Hypoxia), N0.7 (0.70% Arg + Normoxia), H0.7 (0.70% Arg + Hypoxia), N1.4 (1.40% Arg + Normoxia), H1.4 (1.40% Arg + Hypoxia). Eighteen experimental units with twelve animals (5.8 ± 0.18 g) each were used for the trial.The results indicated that supplementation of arginine at 0.7 and 1.4% enhanced the hypoxia tolerance time, although the high dose (1.4%) did not yield any further increments. The exposure to hypoxia up-regulated Hypoxia Inducible Factor (HIF)-1α mRNA expression and supplementation of arginine significantly decreased hypoxia induced up-regulation of HIF at 1.4%. Arginine supplementation partially or completely normalised the hypoxia induced changes in the metabolic enzymes of C. mrigala. The fish exposed to hypoxic conditions exhibited significantly higher (P < 0.05) lipid peroxidation levels than those maintained under normoxic conditions, while arginine feeding significant in reducing lipid peroxidation. Antioxidant enzyme activities were significantly higher (P < 0.05) in hypoxia-exposed carp, indicating increased oxidative stress during the hypoxic exposure, that was improved in Arg-supplemented groups. However, arginine did not modulate erythrocyte countsalthough itreduced the erythrocyte fragility. We conclude arginine supplementation is effective in ameliorating hypoxia induced metabolic alterations and improving antioxidant defences in fish.
Assuntos
Carpas , Cyprinidae , Animais , Arginina/metabolismo , Arginina/farmacologia , Carpas/metabolismo , Cyprinidae/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estresse OxidativoRESUMO
The present experiment was designed to evaluate the effect of graded level of zinc on Vitellogenin gene (Vtg) expression and antioxidant enzymes in threatened catfish, Clarias magur (C. magur). One hundred and eighty female C. magur with an average weight of 145 ± 5 g were allocated in twelve cemented tanks with dimension 4.5 × 2 × 1 m for a period of 60 days. Fish were distributed in four groups with three replicates following the completely randomised design. The first group treated as control (C) fed with basal diet contained normal zinc level, and remaining groups were fed with basal diets having 50, 200 and 300 mg/kg zinc acetate and treated as T1, T2 and T3 respectively. To evaluate the effect of dietary zinc supplementation on Vtg gene expression, three sampling were carried out, I sampling (April, before starting the experimental trail), II sampling (May, after 1 month of feeding trail) and III sampling (June before breeding season). In the present study, a dose-dependent relationship between Vtg gene expression and zinc inclusion in the diet of threatened catfish, C. magur, was reported. Vtg gene expression increased in all groups from I sampling to II sampling but the highest Vtg gene expression was found in T1 group and the lowest in T3 group at II sampling. Vtg gene expression among the treatments differs significantly (P < 0.05) in each sampling. Accumulation of zinc was measured by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) in C. magur and it was reported that the significantly higher (P < 0.05) zinc was accumulated in the liver and ovary of T3 group as compared to other groups. The antioxidant enzyme activities (superoxide dismutase, SOD, catalase and GST) were also measured in different tissues (liver, gill and ovary) to evaluate the effect of extra-supplementation of zinc on the antioxidant status. In T3 group, SOD, catalase and GST activities were significantly higher than those in other groups. In the current study, serum glucose level was also measured and it was found in increasing trend with inclusion of zinc in the diet of C. magur. In the present study, it can be concluded that the zinc exhibits beneficial effect only up to 50 mg/kg. Thus, it is concluded that supplementation of zinc at 200 mg/kg or more disrupts Vtg gene expression and antioxidant status.
Assuntos
Antioxidantes , Peixes-Gato , Animais , Antioxidantes/metabolismo , Peixes-Gato/genética , Peixes-Gato/metabolismo , Dieta , Suplementos Nutricionais , Feminino , Expressão Gênica , Vitelogeninas/genética , Vitelogeninas/metabolismo , Zinco/metabolismo , Zinco/farmacologiaRESUMO
The Indian major carp, mrigal (Cirrhinus mrigala), is a bottom-dwelling fish that can survive hypoxic episodes in its natural environment. We hypothesise that it can better survive hypoxic conditions by altering metabolic responses through GABA (Gamma-aminobutyric acid) supplementation. In the first experiment, the hypoxia tolerance time of the fishes was evaluated under extreme anoxic conditions after feeding with GABA, which showed that GABA had improved survival time under hypoxia. To study the response of dietary GABA in hypoxia-exposed fish, the branchial HIF-1α expression levels, serum thyroid hormone levels and hepatic metabolic responses were assessed in the subsequent experiment. The treatment groups were fed for 60 days with experimental diets containing 4 levels of GABA (0.00% G, 0.50% G, 0.75% G and 1.0%G) and were subjected to 72-h hypoxia exposure (0.5 ± 0.02 mg L-1 dissolved oxygen (DO)) whereas a control group was maintained under normoxic conditions (6.0 ± 0.21 mg L-1 DO). The five treatment groups with three replicates were C0 (0% G + normoxia), H0 (0% G + hypoxia), H0.5 (0.50% G + hypoxia), H0.75 (0.75% G + hypoxia) and H1.0 (1.00% G + hypoxia). The results indicated that GABA supplementation triggered downregulation of HIF 1 alpha expression. When compared with the control group, decreased thyroxine (T4) and triiodothyronine (T3) levels were observed in the GABA-fed hypoxic groups. However, TSH (thyroid stimulating hormone) level remained unchanged in all the treatments. The LDH (lactate dehydrogenase) level in hypoxia-exposed groups was decreased by GABA supplementation. Our study demonstrated that GABA supplementation restores acute hypoxia-induced HIF-1α expression, thyroid hormone levels and LDH activities. On the other hand, it enhanced the citrate synthase (CS) activities at 0.5-1.00%, which showed a sharp decline in hypoxia. Hypoxia caused increase in the serum metabolites such as glucose, lactate, cholesterol and triglycerides. However, GABA supplementation was partially effective in reducing glucose and lactate level while triglycerides and cholesterol values remained unchanged. Overall, our results suggested a potential role of GABA in suppressing metabolism during hypoxia exposure, which can increase the chances of survival of the species Cirrhinus mrigala during hypoxia.
Assuntos
Adaptação Fisiológica/fisiologia , Carpas/fisiologia , Dieta , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Hormônios Tireóideos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Cyprinidae , Oxigênio , Alimentos Marinhos , Tri-IodotironinaRESUMO
BACKGROUND/AIMS: The growth promoting effect of lysine and betaine as well as the expression of candidate genes reflecting their efficacy, such as ghrelin, leptin, Growth Hormone Secretagogue Receptor (GHS-R), Insulin like Growth Factor (IGF- 1) and Growth Hormone Releasing Hormone (GHRH) was examined in Labeo rohita fingerlings. METHODS: One hundred eighty healthy juveniles from a homologous population were randomly distributed to 15 rectangular tanks of 150 litres capacity. The experiment was carried out for 60 days with five treatment groups consisting T1 (0.25% Betaine), T2 (0.5% Betaine), T3 (0.75% Lysine) and T4 (1.5% Lysine) and control group. The experiment was carried out for 60 days with five treatment groups consisting T1 (0.25% Betaine), T2 (0.5% Betaine), T3 (0.75% Lysine) and T4 (1.5% Lysine) and control group. At the end of trial, the growth parameters such as weight gain, SGR, PER were estimated from the weight of the triplicate groups. The digestive, metabolic and antioxidant enzymes were analysed using spectrophotometric methods. The intestine, brain and liver were sampled from the treatments and expression of different genes ghrelin, leptin, GHSR, IGF-1 and GHRH was also performed by realtime PCR. RESULTS: A significant (P<0.05) increase in weight gain, SGR, PER and lowest FCR was found in T4 group which was significantly (p < 0.05) different from other experimental groups. The highest mRNA expression levels of expression were found in T4 group which was similar to that of ghrelin gene mRNA of T2 group. The significantly (p<0.05) highest GHSR, GHRH and IGF-1 gene expression levels were found in T4 treatment group compared to other groups. CONCLUSION: The present study reveals that the lysine and betaine stimulate growth and expression of ghrelin GHRH, GHS-R and IGF-1 genes. The increase of IGF-I mRNA expression with lysine and betaine supplementation revealed that these compounds act as growth modulators. However, lysine was found to be a more potent modulator of growth compared to betaine.