Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670392

RESUMO

Manipulation of the LED illumination spectrum can enhance plant growth rate and development in grow tents. We report on the identification of the illumination spectrum required to significantly enhance the growth rate of sweet basil (Ocimum basilicum L.) plants in grow tent environments by controlling the LED wavebands illuminating the plants. Since the optimal illumination spectrum depends on the plant type, this work focuses on identifying the illumination spectrum that achieves significant basil biomass improvement compared to improvements reported in prior studies. To be able to optimize the illumination spectrum, several steps must be achieved, namely, understanding plant biology, conducting several trial-and-error experiments, iteratively refining experimental conditions, and undertaking accurate statistical analyses. In this study, basil plants are grown in three grow tents with three LED illumination treatments, namely, only white LED illumination (denoted W*), the combination of red (R) and blue (B) LED illumination (denoted BR*) (relative red (R) and blue (B) intensities are 84% and 16%, respectively) and a combination of red (R), blue (B) and far-red (F) LED illumination (denoted BRF*) (relative red (R), blue (B) and far-red (F) intensities are 79%, 11%, and 10%, respectively). The photosynthetic photon flux density (PPFD) was set at 155 µmol m-2 s-1 for all illumination treatments, and the photoperiod was 20 h per day. Experimental results show that a combination of blue (B), red (R), and far-red (F) LED illumination leads to a one-fold increase in the yield of a sweet basil plant in comparison with only white LED illumination (W*). On the other hand, the use of blue (B) and red (R) LED illumination results in a half-fold increase in plant yield. Understanding the effects of LED illumination spectrum on the growth of plant sweet basil plants through basic horticulture research enables farmers to significantly improve their production yield, thus food security and profitability.

2.
J Environ Manage ; 222: 454-464, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906717

RESUMO

The petrochemical industry is one of the most important industries in the world economy. In the largest oil-producing countries, more than half of GDP is generated by hydrocarbons production and refining. Reduction of oil prices and new environmental regulations are forcing petrochemical companies to improve their energy efficiency. Improvement of the energy efficiency of Crude oil distillation process at atmospheric vacuum distillation unit (AVDU) with a capacity of 3.3 million ton per year is considered in this paper. The amount of fuel spent for reprocessing of one ton of crude oil has been defined and it is 3.79 kg of natural gas. This paper shows the ways to achieve the objectives of retrofit in the context of administrative and technical restrictions. The retrofit goal was achieved by the retrofit of the heat exchange network, which allowed reducing gas consumption by 0.98 t/h (natural gas). The provided case studies show the pathway for efficient retrofit of crude oil distillation and most profitable ways for investment taking into account various administrative and technical constraints. The results of this work allow achieving reduction of energy consumption by 26%.


Assuntos
Poluição Ambiental/prevenção & controle , Indústria de Petróleo e Gás , Petróleo , Destilação , Hidrocarbonetos , Indústrias , Tecnologia
3.
J Med Microbiol ; 60(Pt 1): 75-83, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20829396

RESUMO

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 10(5) c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 10(5) c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 10(5) c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


Assuntos
Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Argônio/farmacologia , Argônio/uso terapêutico , Viabilidade Microbiana/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Animais , Antissepsia/métodos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Masculino , Testes de Sensibilidade Microbiana , Modelos Animais , Ratos , Ratos Sprague-Dawley , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA