Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000106

RESUMO

BACKGROUND: The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE: We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS: A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT: The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION: The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.


Assuntos
Catequina , Chá , Catequina/farmacocinética , Estresse Oxidativo , Disponibilidade Biológica , Metaboloma
2.
Braz J Microbiol ; 54(3): 1479-1499, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37165297

RESUMO

Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.


Assuntos
Doenças do Sistema Nervoso Central , Plantas Medicinais , Humanos , Donepezila/metabolismo , Rivastigmina/metabolismo , Endófitos/metabolismo , Fungos/metabolismo
3.
World J Microbiol Biotechnol ; 35(5): 74, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053977

RESUMO

In the present study, an endophytic fungal strain was isolated from its non-Taxus host plant Terminalia arjuna and identified as Alternaria brassicicola based on its morphological characteristics and internal transcribed spacer sequence analysis. This fungus was grown in potato dextrose broth and analyzed for the presence of taxol by using chromatographic and spectrometric techniques. The ethyl acetate extract of A.brassicicola was subjected to column chromatography. Among the different fractions, the fraction 7 showed positive to taxol, which was further confirmed by UV absorption, HPLC, FTIR spectra and LC-ESI-MS by comparing with the authentic taxol (Paclitaxel). The peaks of fraction 7 obtained by UV spectroscopy, FTIR and HPLC analysis were quite similar to that of standard taxol confirming the presence of taxol. A parent ion peak of m/z 854.95 was observed in the LC-ESI-MS spectrum which was similar to paclitaxel with reported m/z of 854 [M+H]+ ion. A. brassicicola produced about 140.8 µg/l taxol as quantified through HPLC. Present study results suggest that the endophytic fungus A.brassicicola serves as a potential source for the production of taxol isolated from non-Taxus plant.


Assuntos
Alternaria/isolamento & purificação , Alternaria/metabolismo , Paclitaxel/química , Paclitaxel/isolamento & purificação , Plantas Medicinais/microbiologia , Terminalia/microbiologia , Alternaria/classificação , Cromatografia , Cromatografia Líquida de Alta Pressão , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fermentação , Espectrometria de Massas , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Phytother Res ; 30(11): 1775-1784, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27406028

RESUMO

Despite the widespread use of hormone replacement therapy, various reports on its side effects have generated an increasing interest in the development of safe natural agents for the management of postmenopausal discomforts. The present randomized, double-blinded, placebo-controlled study investigated the effect of 90-day supplementation of a standardized extract of fenugreek (Trigonella foenum-graecum) (FenuSMART™), at a dose of 1000 mg/day, on plasma estrogens and postmenopausal discomforts. Eighty-eight women having moderate to severe postmenopausal discomforts and poor quality of life (as evidenced from the scores of Greene Climacteric Scale, short form SF-36® and structured medical interview) were randomized either to extract-treated (n = 44) or placebo (n = 44) groups. There was a significant (p < 0.01) increase in plasma estradiol (120%) and improvements on various postmenopausal discomforts and quality of life of the participants in the extract-treated group, as compared with the baseline and placebo. While 32% of the subjects in the extract group reported no hot flashes after supplementation, the others had a reduction to one to two times per day from the baseline stages of three to five times a day. Further analysis of haematological and biochemical parameters revealed the safety of the extract and its plausible role in the management of lipid profile among menopausal women. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Menopausa/metabolismo , Extratos Vegetais/química , Pós-Menopausa/efeitos dos fármacos , Trigonella/química , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA