RESUMO
Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Administração Cutânea , Glucose , Neoplasias PancreáticasRESUMO
Isocitrate dehydrogenase 1 (IDH1) has been investigated as a promising therapeutic target in select cancers with a mutated version of the enzyme (mtIDH1). With only one phase III trial published to date and two indications approved for routine clinical use by the FDA, we reviewed the entire clinical trial portfolio to broadly understand mtIDH1 inhibitor activity in patients. We queried PubMed.gov and ClinicalTrials.gov to identify published and ongoing clinical trials related to IDH1 and cancer. Progression-free survival (PFS), overall survival (OS), 2-hydroxyglutarate levels, and adverse events were summarized. To date, ten clinical trials investigating mtIDH1 inhibitors among patients with diverse malignancies (cholangiocarcinoma, acute myeloid leukemia, chondrosarcoma, glioma) have been published. Almost every trial (80%) has investigated ivosidenib. In multiple phase I trials, ivosidenib treatment resulted in promising radiographic and biochemical responses with improved survival outcomes (relative to historic data) among patients with both solid and hematologic mtIDH1 malignancies. Among patients enrolled in a phase III trial with advanced cholangiocarcinoma, ivosidenib resulted in a PFS rate of 32% at 6 months, as compared to 0% with placebo. There was a 5.2 month increase in OS with ivosidenib relative to placebo, after considering crossover. The treatment-specific grade ≥3 adverse event rate of ivosidenib was 2%-26% among all patients, and was just 3.6% among 284 patients who had a solid tumor across four trials. Although <1% of malignancies harbor IDH1 mutations, small molecule mtIDH1 inhibitors, namely ivosidenib, appear to be biologically active and well tolerated in patients with solid and hematologic mtIDH1 malignancies.