Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12394, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455781

RESUMO

A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Mutação com Perda de Função , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/genética , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
2.
Biochem Biophys Res Commun ; 493(1): 444-450, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28882594

RESUMO

Two-pore domain potassium channels (K2Ps) are characterized by their four transmembrane domain and two-pore topology. They carry background (or leak) potassium current in a variety of cell types. Despite a number of important roles there is currently a lack of pharmacological tools with which to further probe K2P function. We have developed a cell-based thallium flux assay, using baculovirus delivered TASK3 (TWIK-related acid-sensitive K+ channel 3, KCNK9, K2P9.1) with the aim of identifying novel, selective TASK3 activators. After screening a library of 1000 compounds, including drug-like and FDA approved molecules, we identified Terbinafine as an activator of TASK3. In a thallium flux assay a pEC50 of 6.2 ( ±0.12) was observed. When Terbinafine was screened against TASK2, TREK2, THIK1, TWIK1 and TRESK no activation was observed in thallium flux assays. Several analogues of Terbinafine were also purchased and structure activity relationships examined. To confirm Terbinafine's activation of TASK3 whole cell patch clamp electrophysiology was carried out and clear potentiation observed in both the wild type channel and the pathophysiological, Birk-Barel syndrome associated, G236R TASK3 mutant. No activity at TASK1 was observed in electrophysiology studies. In conclusion, we have identified the first selective activator of the two-pore domain potassium channel TASK3.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ativação do Canal Iônico/fisiologia , Naftalenos/administração & dosagem , Naftalenos/química , Canais de Potássio de Domínios Poros em Tandem/agonistas , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Potássio/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Porosidade , Potássio/química , Domínios Proteicos , Relação Estrutura-Atividade , Terbinafina
3.
Br J Pharmacol ; 173(10): 1639-52, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26914156

RESUMO

BACKGROUND AND PURPOSE: Aristolochic acid (AristA) is found in plants used in traditional medicines to treat pain. We investigated the action of AristA on TREK and TRESK, potassium (K2P) channels, which are potential therapeutic targets in pain. Balkan endemic nephropathy (BEN) is a renal disease associated with AristA consumption. A mutation of TASK-2 (K2P 5.1) channels (T108P) is seen in some patients susceptible to BEN, so we investigated how both this mutation and AristA affected TASK-2 channels. EXPERIMENTAL APPROACH: Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of AristA. KEY RESULTS: TREK-1- and TREK-2-mediated currents were enhanced by AristA (100 µM), whereas TRESK was inhibited. Inhibition of TRESK did not depend on the phosphorylation of key intracellular serines but was completely blocked by mutation of bulky residues in the inner pore (F145A_F352A). The TASK-2_T108P mutation markedly reduced both current density and ion selectivity. A related mutation (T108C) had similar but less marked effects. External alkalization and application of flufenamic acid enhanced TASK-2 and TASK-2_T108C current but did not affect TASK-2_T108P current. AristA (300 µM) produced a modest enhancement of TASK-2 current. CONCLUSIONS AND IMPLICATIONS: Enhancement of TREK-1 and TREK-2 and inhibition of TRESK by AristA may contribute to therapeutically useful effects of this compound in pain. Whilst AristA is unlikely to interact directly with TASK-2 channels in BEN, loss of functional TASK-2 channels may indirectly increase susceptibility to AristA toxicity.


Assuntos
Ácidos Aristolóquicos/farmacologia , Nefropatia dos Bálcãs/tratamento farmacológico , Dor/tratamento farmacológico , Extratos Vegetais/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/isolamento & purificação , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA