Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 326: 117935, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38408692

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nonalcoholic fatty liver disease (NAFLD) is the most common severe liver disease globally, progressing further into nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Vasaguduchyadi Kwatha (VK) is an Ayurvedic formulation traditionally used to treat liver diseases and other metabolic complications. This study is an ethnopharmacological approach to unravel this indigenous remedy. AIM OF THE STUDY: We aimed to discover the probable mechanism of action of VK against NASH in this study, using network pharmacology, molecular docking, in vitro study, and preclinical investigation. METHODS AND RESULTS: Among the 55 components identified, 10 were confirmed based on mass, elution charecteristics, MS/MS analysis data, and fragmentation rules. Computational study indicated 92 targets involved in the central pathways of NASH, out of which only 15 targets and 9 VK constituents have significant docking scores. In vitro and in vivo analysis results showed that VK significantly reduces weight gain and improves insulin sensitivity, dyslipidemia, steatohepatitis and overall histological features of NASH compared to saroglitazar (SGZR). CONCLUSION: Our detailed study yielded three signalling pathways related to NASH on which VK has maximum effect, bringing up a probable alternative treatment for NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Fígado/metabolismo
2.
Homeopathy ; 113(1): 16-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673083

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a potentially fatal disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have shown that hydroxychloroquine (HCQ) significantly inhibits SARS-CoV-2 infections in vitro. OBJECTIVE: Since the phytoconstituents of Cinchona officinalis (CO) are similar to those of HCQ, the objective of this study was to test the antiviral potential of different homeopathic formulations of CO. METHODS: An analysis of the molecular composition of CO was carried out using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry, followed by a detailed docking study. The constituents of CO were docked against various targets of SARS-CoV-2, and the binding potential of the phytoconstituents was compared and quantified. The ligand with the lowest Glide docking score is considered to have the best binding affinity. The cytotoxicity of several homeopathic formulations, including CO mother tincture (CO-MT), was also checked on VeroE6 cells. A known antiviral, remdesivir, was used as a positive control for the in vitro assays to evaluate the effects of CO-MT against SARS-CoV-2-infected VeroE6 cells. RESULTS: Molecular docking studies showed that constituents of CO exhibited binding potential to various targets of SARS-CoV-2, including Mpro, PLpro, RdRp, nucleocapsid protein, ACE2 (in host) and spike protein. Quinoline, one of the constituents of CO, can potentially bind the spike protein of SARS-CoV-2. Quinic acid showed better binding capabilities with Mpro, PLpro RdRp, nucleocapsid protein and ACE2 (allosteric site) than other constituents. Quinidine exhibited better binding to ACE2. Compared to HCQ, other phytoconstituents of CO had the equivalent potential to bind the RNA-dependent RNA polymerase, nucleocapsid protein, Mpro, PLpro and spike protein of SARS-CoV-2. In vitro assays showed that homeopathic CO-MT was not cytotoxic and that CO-MT and remdesivir respectively caused 89% and 99% inhibition of SARS-CoV-2 infection in VeroE6 cells. CONCLUSION: Based on this in silico and in vitro evidence, we propose CO-MT as a promising antiviral medicine candidate for treating COVID-19. In vivo investigation is required to clarify the therapeutic potential of CO-MT in COVID-19.


Assuntos
COVID-19 , Cinchona , Homeopatia , Materia Medica , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus , Proteínas do Nucleocapsídeo , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Antivirais/uso terapêutico
3.
Cell Biol Int ; 46(12): 2142-2157, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36086947

RESUMO

Impaired nutrient sensing mechanisms such as AMPK/silent information regulator type 1 (SIRT1) axis and autophagy in renal cells upon chronic diabetic condition accelerate renal injury and upregulating these mechanisms has been reported to prevent renal damage. Melatonin, a neuroendocrine agent, also possess antioxidant and AMPK modulatory effect. In the current study, the protective effect of melatonin against diabetic renal injury was assessed in streptozotocin-induced diabetic nephropathy model and in in vitro model of high-glucose-induced tubular injury. Melatonin (3 and 10 mg/kg) was administered for 28 days after 4 weeks of diabetes induction in Sprague-Dawley rats. For in vitro model, the NRK-52E cells were co-incubated with high glucose and melatonin (25 and 50 µM). Melatonin supplementation abrogated the diabetes-induced renal injury and improved renal function in diabetic rats. Immunoblot analysis of renal tissue lysates revealed improved expression of AMPK, as well as upregulated the expression of nuclear factor erythroid 2-related factor 2, SIRT1, PGC-1α, TFAM and enhanced autophagy upon melatonin treatment in diabetic rats. Likewise, melatonin treatment in high glucose exposed NRK-52E cells improved expression of AMPK, enhanced mitochondrial biogenesis and positively modulated autophagy. However, these effects were repressed upon inhibition of AMPK activity in NRK-52E cells by treatment of Compound-C, suggesting that the protective effects of melatonin were mainly mediated through activation of AMPK. These results suggest that melatonin might mediate the renoprotective effect by upregulating the AMPK/SIRT1 axis, enhancing the autophagy and mitochondrial health in DIabetic Nephropathy.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Melatonina , Ratos , Animais , Melatonina/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Sprague-Dawley , Autofagia , Mitocôndrias/metabolismo , Glucose/metabolismo
4.
PLoS One ; 16(9): e0257702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34551009

RESUMO

The compound methyl cinnamoyl catalpol (DAM-1) was isolated from the methanol extract of Dolichandrone atrovirens. Studies have already reported the antioxidant activity of Dolichandrone atrovirens bark extract, but till date the antioxidant activity of the isolated compound DAM-1, remains unexplored. The endogenous process of reactive oxygen species generation which leads to various degenerative diseases, can be broken down using these exogenous moieties from plant origin, herein this study we sought to evaluate the antioxidant potential of the DAM-1 compound using Caenorhabditis elegans (C. elegans), which is the primary model to study the antioxidant activity of compounds. Cytotoxicity assay results showed that DAM-1 treatment in the concentration of 10, 25 and 50 µg/ml has shown 100%, 91%, and 50% survival respectively with overall p<0.0001 (treatment v/s control group). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-Formazan (MTT) assay results showed that treatment had better survival rates than the control group at different time intervals i.e. 48 h, and 72 h with p<0.01. Mechanosensation (behavioral study) as well as in vivo study results showed that at 0 h, 10 µg/ml of DAM-1 treatment showed a better anti-oxidative activity than the control group, 25 and 50 µg/ml of DAM-1 treated groups with p<0.001 but at 2.5 h incubation with 10, 25, 50 µg/ml of DAM-1 showed an increased anti-oxidative activity than the control group with p<0.001. Thermoresistance assay confirmed that the treatment group had more survival than control group with p<0.001. Absorption study of DAM-1 in C. elegans has shown that the absorption of the drug increases up to 180 mins with a slight decrease after 360 mins and then constant absorption up to 1440 mins. This study paves the way towards the initiative to explore the pharmacological role of DAM-1 in various oxidative stress mediated diseases at molecular levels and the absorption study points out its potential role which could be utilized in the metabolomics and proteomics analysis of this compound in other studies.


Assuntos
Antioxidantes , Caenorhabditis elegans , Animais , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia
5.
Int J Med Mushrooms ; 22(7): 683-692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865925

RESUMO

Nonalcoholic steatohepatitis (NASH) is becoming the most common cause of hepatocellular carcinoma (HCC). Natural products including edible mushrooms are gaining attention for the prevention and treatment of lifestyle related disorders. Ceraceomyces tessulatus (strain BDM-X) possesses potent antioxidative stress activity. In this study, we hypothesize that BDM-X treatment protects the liver of mouse with NASH by reducing inflammation in a novel NASH-HCC mouse model. C57BL/6J female pups were exposed to low-dose streptozotocin (STZ) and fed a high-fat diet (HFD) 32 from the age of 4 weeks to 16 weeks. Water extract of BDM-X was given at 500 mg/kg dose daily by oral gavage started at the age of 12 weeks and continued until 16 weeks of age along with HFD feeding. We found that BDM-X improved the histopathological changes, serum aminotransferases, and blood glucose levels in NASH mice. The hepatic protein expressions of SIRT1 and IL-10 were significantly repressed in NASH mice. BDM-X treatment restored these expressions. BDM-X treatment effectively reduced the progression of NASH by suppressing the protein expression of SREBPlc, p-NF-κB, Ep-CAM, and prothrombin in the NASH liver. In conclusion, our data suggest that BDM-X can protect the liver against inflammation and lipogenesis in NASH-HCC mice.


Assuntos
Basidiomycota , Produtos Biológicos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Substâncias Protetoras/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-23533514

RESUMO

Bitter melon fruit is recommended in ancient Indian and Chinese medicine for prevention/treatment of diabetes. However its effects on cancer progression are not well understood. Here, we have determined the efficacy of methanolic extracts of bitter melon on colon cancer stem and progenitor cells. Both, whole fruit (BMW) and skin (BMSk) extracts showed significant inhibition of cell proliferation and colony formation, with BMW showing greater efficacy. In addition, the cells were arrested at the S phase of cell cycle. Moreover, BMW induced the cleavage of LC3B but not caspase 3/7, suggesting that the cells were undergoing autophagy and not apoptosis. Further confirmation of autophagy was obtained when western blots showed reduced Bcl-2 and increased Beclin-1, Atg 7 and 12 upon BMW treatment. BMW reduced cellular ATP levels coupled with activation of AMP activated protein kinase; on the other hand, exogenous additions of ATP lead to revival of cell proliferation. Finally, BMW treatment results in a dose-dependent reduction in the number and size of colonospheres. The extracts also decreased the expression of DCLK1 and Lgr5, markers of quiescent, and activated stem cells. Taken together, these results suggest that the extracts of bitter melon can be an effective preventive/therapeutic agent for colon cancer.

7.
Asian Pac J Trop Med ; 5(5): 367-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22546653

RESUMO

OBJECTIVE: To evaluate the protective effect of tannins from Ficus racemosa (F. racemosa) on the lipid profile and antioxidant parameters in high fat meal and streptozotocin induced hypercholesteremia associated diabetes model in rats. METHODS: The crude tannin fraction was separated from the acetone (70% v/v) bark extract of F. racemosa. Oral administration of tannin fraction (TF) (100 & 200 mg/kg body weight) to rats fed with high fat meal for 30 days (4% cholesterol, 1% cholic acid, 0.5% egg albumin) and injected with streptozotocin (35 mg/kg i.p. in citrate buffer on 14th day). RESULTS: The administration of TF significantly reverse the increased blood glucose, total cholesterol, triglycerides, low density lipoprotein and also significantly restored the insulin and high density lipoprotein in the serum. In addition tannins significantly restored the activity of antioxidant enzymes such as superoxide dismutase, catalase and decreased the, glutathione peroxidase, and glutathione, thereby restoring the antioxidant status of the organs to almost normal levels. CONCLUSIONS: The results of this study show that two different doses of tannin supplementation had a favorable effect on plasma glucose and lipid profile concentrations. It also had an influence on attenuating oxidative stress in diabetic tats.


Assuntos
Angiopatias Diabéticas/tratamento farmacológico , Ficus , Hipercolesterolemia/tratamento farmacológico , Fitoterapia/métodos , Extratos Vegetais/farmacologia , Taninos/farmacologia , Animais , Cromatografia em Camada Fina , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Coração/efeitos dos fármacos , Hiperlipidemias/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Miocárdio/enzimologia , Casca de Planta , Ratos , Ratos Wistar , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA