Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 434: 51-61, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542299

RESUMO

Crop and animal production in China has increased significantly during the last decades, but at the cost of large increases in nitrogen (N) and phosphorus (P) losses, which contribute to ecosystem degradation and human health effects. This information is largely based on scattered field experiments, surveys and national statistics. As a consequence, there is as yet no comprehensive understanding of the changes in N and P cycling and losses at regional and national scales. Here, we present the results of an integrated assessment of the N and P use efficiencies (NUE and PUE) and N and P losses in the chain of crop and animal production, food processing and retail, and food consumption at regional scale in 1980 and 2005, using a uniform approach and databases. Our results show that the N and P costs of food production-consumption almost doubled between 1980 and 2005, but with large regional variation. The NUE and PUE of crop production decreased dramatically, while NUE and PUE in animal production increased. Interestingly, NUE and PUE of the food processing sector decreased from about 75% to 50%. Intake of N and P per capita increased, but again with large regional variation. Losses of N and P from agriculture to atmosphere and water bodies increased in most regions, especially in the east and south of the country. Highest losses were estimated for the Beijing and Tianjin metropolitan regions (North China), Pearl River Delta (South China) and Yangzi River Delta (East China). In conclusion, the changes and regional variations in NUE and PUE in the food chain of China are large and complex. Changes occurred in the whole crop and animal production, food processing and consumption chain, and were largest in the most populous areas between 1980 and 2005.


Assuntos
Cadeia Alimentar , Nitrogênio/metabolismo , Fósforo/metabolismo , China , Produtos Agrícolas/metabolismo
2.
J Environ Qual ; 39(4): 1279-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20830916

RESUMO

Increasing nitrogen (N) and phosphorus (P) inputs have greatly contributed to the increasing food production in China during the last decades, but have also increased N and P losses to the environment. The pathways and magnitude of these losses are not well quantified. Here, we report on N and P use efficiencies and losses at a national scale in 2005, using the model NUFER (NUtrient flows in Food chains, Environment and Resources use). Total amount of "new" N imported to the food chain was 48.8 Tg in 2005. Only 4.4.Tg reached households as food. Average N use efficiencies in crop production, animal production, and the whole food chain were 26, 11, and 9%, respectively. Most of the imported N was lost to the environment, that is, 23 Tg N to atmosphere, as ammonia (57%), nitrous oxide (2%), dinitrogen (33%), and nitrogen oxides (8%), and 20 Tg to waters. The total P input into the food chain was 7.8 Tg. The average P use efficiencies in crop production, animal production, and the whole food chain were 36, 5, and 7%, respectively. This is the first comprehensive overview of N and P balances, losses, and use efficiencies of the food chain in China. It shows that the N and P costs of food are high (for N 11 kg kg(-1), for P 13 kg kg(-1)). Key measures for lowering the N and P costs of food production are (i) increasing crop and animal production, (ii) balanced fertilization, and (iii) improved manure management.


Assuntos
Cadeia Alimentar , Abastecimento de Alimentos , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Animais Domésticos , China , Produtos Agrícolas , Humanos
3.
J Environ Qual ; 38(2): 402-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19202011

RESUMO

The high N inputs to agricultural systems in many regions in 27 member states of the European Union (EU-27) result in N leaching to groundwater and surface water and emissions of ammonia (NH(3)), nitrous oxide (N(2)O), nitric oxide (NO), and dinitrogen (N(2)) to the atmosphere. Measures taken to decreasing these emissions often focus at one specific pollutant, but may have both antagonistic and synergistic effects on other N emissions. The model MITERRA-EUROPE was developed to assess the effects and interactions of policies and measures in agriculture on N losses and P balances at a regional level in EU-27. MITERRA-EUROPE is partly based on the existing models CAPRI and GAINS, supplemented with a N leaching module and a module with sets of measures. Calculations for the year 2000 show that denitrification is the largest N loss pathway in European agriculture (on average 44 kg N ha(-1) agricultural land), followed by NH(3) volatilization (17 kg N ha(-1)), N leaching (16 kg N ha(-1)) and emissions of N(2)O (2 kg N ha(-1)) and NO(X) (2 kg N ha(-1)). However, losses between regions in the EU-27 vary strongly. Some of the measures implemented to abate NH(3) emission may increase N(2)O emissions and N leaching. Balanced N fertilization has the potential of creating synergistic effects by simultaneously decreasing N leaching and NH(3) and N(2)O emissions. MITERRA-EUROPE is the first model that quantitatively assesses the possible synergistic and antagonistic effects of N emission abatement measures in a uniform way in EU-27.


Assuntos
Agricultura/estatística & dados numéricos , Poluentes Atmosféricos/análise , Modelos Químicos , Compostos de Nitrogênio/análise , Poluentes Químicos da Água/análise , Agricultura/legislação & jurisprudência , Poluição do Ar/prevenção & controle , União Europeia , Fósforo/análise , Incerteza , Volatilização , Poluição Química da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA