Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785619

RESUMO

Clostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI), as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile To date, the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is nontoxigenic C. difficile Using multiple infection models, we determined that precolonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile, is sufficient to decrease germination of the second strain, thereby limiting colonization by the lethal strain.IMPORTANCE Antibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile In this study, we found that reduction of the amino acid glycine by precolonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which precolonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.


Assuntos
Antibiose , Terapia Biológica , Clostridioides difficile/fisiologia , Infecções por Clostridium/prevenção & controle , Animais , Clostridioides difficile/classificação , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Feminino , Glicina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Esporos Bacterianos/classificação , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Virulência
2.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915217

RESUMO

Dietary fiber provides a variety of microbiota-mediated benefits ranging from anti-inflammatory metabolites to pathogen colonization resistance. A healthy gut microbiota protects against Clostridioides difficile colonization. Manipulation of these microbes through diet may increase colonization resistance to improve clinical outcomes. The primary objective of this study was to identify how the dietary fiber xanthan gum affects the microbiota and C. difficile colonization. We added 5% xanthan gum to the diet of C57BL/6 mice and examined its effect on the microbiota through 16S rRNA gene amplicon sequencing and short-chain fatty acid analysis. Following either cefoperazone or an antibiotic cocktail administration, we challenged mice with C. difficile and measured colonization by monitoring the CFU. Xanthan gum administration is associated with increases in fiber-degrading taxa and short-chain fatty acid concentrations. However, by maintaining both the diversity and absolute abundance of the microbiota during antibiotic treatment, the protective effects of xanthan gum administration on the microbiota were more prominent than the enrichment of these fiber-degrading taxa. As a result, mice that were on the xanthan gum diet experienced limited to no C. difficile colonization. Xanthan gum administration alters mouse susceptibility to C. difficile colonization by maintaining the microbiota during antibiotic treatment. While antibiotic-xanthan gum interactions are not well understood, xanthan gum has previously been used to bind drugs and alter their pharmacokinetics. Thus, xanthan gum may alter the activity of the oral antibiotics used to make the microbiota susceptible. Future research should further characterize how this and other common dietary fibers interact with drugs.IMPORTANCE A healthy gut bacterial community benefits the host by breaking down dietary nutrients and protecting against pathogens. Clostridioides difficile capitalizes on the absence of this community to cause diarrhea and inflammation. Thus, a major clinical goal is to find ways to increase resistance to C. difficile colonization by either supplementing with bacteria that promote resistance or a diet to enrich for those already present in the gut. In this study, we describe an interaction between xanthan gum, a human dietary additive, and the microbiota resulting in an altered gut environment that is protective against C. difficile colonization.


Assuntos
Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/prevenção & controle , Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos Bacterianos/administração & dosagem , Animais , Cefoperazona/uso terapêutico , Infecções por Clostridium/microbiologia , Suplementos Nutricionais , Suscetibilidade a Doenças , Fezes/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
3.
mSphere ; 4(2)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894434

RESUMO

Between October 2016 and June 2017, a C57BL/6J mouse colony that was undergoing a pre- and perinatal methyl donor supplementation diet intervention to study the impact of parental nutrition on offspring susceptibility to disease was found to suffer from an epizootic of unexpected deaths. Necropsy revealed the presence of severe colitis, and further investigation linked these outbreak deaths to a Clostridium difficile strain of ribotype 027 that we term 16N203. C. difficile infection (CDI) is associated with antibiotic use in humans. Current murine models of CDI rely on antibiotic pretreatment to establish clinical phenotypes. In this report, the C. difficile outbreak occurs in F1 mice linked to alterations in the parental diet. The diagnosis of CDI in the affected mice was confirmed by cecal/colonic histopathology, the presence of C. difficile bacteria in fecal/colonic culture, and detection of C. difficile toxins. F1 mice from parents fed the methyl supplementation diet also had significantly reduced survival (P < 0.0001) compared with F1 mice from parents fed the control diet. When we tested the 16N203 outbreak strain in an established mouse model of antibiotic-induced CDI, we confirmed that this strain is pathogenic. Our serendipitous observations from this spontaneous outbreak of C. difficile in association with a pre- and perinatal methyl donor diet suggest the important role that diet may play in host defense and CDI risk factors.IMPORTANCEClostridium difficile infection (CDI) has become the leading cause of infectious diarrhea in hospitals worldwide, owing its preeminence to the emergence of hyperendemic strains, such as ribotype 027 (RT027). A major CDI risk factor is antibiotic exposure, which alters gut microbiota, resulting in the loss of colonization resistance. Current murine models of CDI also depend on pretreatment of animals with antibiotics to establish disease. The outbreak that we report here is unique in that the CDI occurred in mice with no antibiotic exposure and is associated with a pre- and perinatal methyl supplementation donor diet intervention study. Our investigation subsequently reveals that the outbreak strain that we term 16N203 is an RT027 strain, and this isolated strain is also pathogenic in an established murine model of CDI (with antibiotics). Our report of this spontaneous outbreak offers additional insight into the importance of environmental factors, such as diet, and CDI susceptibility.


Assuntos
Infecções por Clostridium/etiologia , Dieta/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Surtos de Doenças , Animais , Betaína/metabolismo , Colina/metabolismo , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/patogenicidade , Suscetibilidade a Doenças/etiologia , Feminino , Masculino , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nutrição Parenteral/métodos , Ribotipagem , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA